改变评估:大型语言模型和生成式人工智能的影响和意义

IF 2.7 4区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Jiangang Hao, Alina A. von Davier, Victoria Yaneva, Susan Lottridge, Matthias von Davier, Deborah J. Harris
{"title":"改变评估:大型语言模型和生成式人工智能的影响和意义","authors":"Jiangang Hao,&nbsp;Alina A. von Davier,&nbsp;Victoria Yaneva,&nbsp;Susan Lottridge,&nbsp;Matthias von Davier,&nbsp;Deborah J. Harris","doi":"10.1111/emip.12602","DOIUrl":null,"url":null,"abstract":"<p>The remarkable strides in artificial intelligence (AI), exemplified by ChatGPT, have unveiled a wealth of opportunities and challenges in assessment. Applying cutting-edge large language models (LLMs) and generative AI to assessment holds great promise in boosting efficiency, mitigating bias, and facilitating customized evaluations. Conversely, these innovations raise significant concerns regarding validity, reliability, transparency, fairness, equity, and test security, necessitating careful thinking when applying them in assessments. In this article, we discuss the impacts and implications of LLMs and generative AI on critical dimensions of assessment with example use cases and call for a community effort to equip assessment professionals with the needed AI literacy to harness the potential effectively.</p>","PeriodicalId":47345,"journal":{"name":"Educational Measurement-Issues and Practice","volume":"43 2","pages":"16-29"},"PeriodicalIF":2.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming Assessment: The Impacts and Implications of Large Language Models and Generative AI\",\"authors\":\"Jiangang Hao,&nbsp;Alina A. von Davier,&nbsp;Victoria Yaneva,&nbsp;Susan Lottridge,&nbsp;Matthias von Davier,&nbsp;Deborah J. Harris\",\"doi\":\"10.1111/emip.12602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The remarkable strides in artificial intelligence (AI), exemplified by ChatGPT, have unveiled a wealth of opportunities and challenges in assessment. Applying cutting-edge large language models (LLMs) and generative AI to assessment holds great promise in boosting efficiency, mitigating bias, and facilitating customized evaluations. Conversely, these innovations raise significant concerns regarding validity, reliability, transparency, fairness, equity, and test security, necessitating careful thinking when applying them in assessments. In this article, we discuss the impacts and implications of LLMs and generative AI on critical dimensions of assessment with example use cases and call for a community effort to equip assessment professionals with the needed AI literacy to harness the potential effectively.</p>\",\"PeriodicalId\":47345,\"journal\":{\"name\":\"Educational Measurement-Issues and Practice\",\"volume\":\"43 2\",\"pages\":\"16-29\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Educational Measurement-Issues and Practice\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/emip.12602\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational Measurement-Issues and Practice","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/emip.12602","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

以 ChatGPT 为代表的人工智能(AI)取得了长足进步,为评估领域带来了大量机遇和挑战。将尖端的大型语言模型(LLMs)和生成式人工智能应用于评估,在提高效率、减少偏差和促进定制化评估方面大有可为。与此相反,这些创新技术在有效性、可靠性、透明度、公平性、公正性和测试安全性等方面也引起了极大的关注,因此在评估中应用这些技术时必须慎重考虑。在这篇文章中,我们通过使用实例讨论了 LLMs 和生成式人工智能对评估关键维度的影响和意义,并呼吁社会各界共同努力,使评估专业人员具备必要的人工智能素养,从而有效利用人工智能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transforming Assessment: The Impacts and Implications of Large Language Models and Generative AI

The remarkable strides in artificial intelligence (AI), exemplified by ChatGPT, have unveiled a wealth of opportunities and challenges in assessment. Applying cutting-edge large language models (LLMs) and generative AI to assessment holds great promise in boosting efficiency, mitigating bias, and facilitating customized evaluations. Conversely, these innovations raise significant concerns regarding validity, reliability, transparency, fairness, equity, and test security, necessitating careful thinking when applying them in assessments. In this article, we discuss the impacts and implications of LLMs and generative AI on critical dimensions of assessment with example use cases and call for a community effort to equip assessment professionals with the needed AI literacy to harness the potential effectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
15.00%
发文量
47
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信