Boyu Guo, Eun-Ji Kim, Yuxian Zhu, Kun Wang, Eugenia Russinova
{"title":"通过支架蛋白塑造铜绿素类固醇信号转导","authors":"Boyu Guo, Eun-Ji Kim, Yuxian Zhu, Kun Wang, Eugenia Russinova","doi":"10.1093/pcp/pcae040","DOIUrl":null,"url":null,"abstract":"Cellular responses to internal and external stimuli are orchestrated by intricate intracellular signaling pathways. To ensure an efficient and specific information flow, cells employ scaffold proteins as critical signaling organizers. With the ability to bind multiple signaling molecules, scaffold proteins can sequester signaling components within specific subcellular domains or modulate the efficiency of signal transduction. Scaffolds can also tune the output of signaling pathways by serving as regulatory targets. This review focuses on scaffold proteins associated with the plant GLYCOGEN SYNTHASE KINASE3-like kinase, BRASSINOSTEROID-INSENSITIVE2 (BIN2) that serve as a key negative regulator of brassinosteroid (BR) signaling. Here we summarize the current understanding of how scaffold proteins actively shape BR signaling outputs and crosstalk in plant cells via interactions with BIN2.","PeriodicalId":502140,"journal":{"name":"Plant & Cell Physiology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shaping brassinosteroid signaling through scaffold proteins\",\"authors\":\"Boyu Guo, Eun-Ji Kim, Yuxian Zhu, Kun Wang, Eugenia Russinova\",\"doi\":\"10.1093/pcp/pcae040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellular responses to internal and external stimuli are orchestrated by intricate intracellular signaling pathways. To ensure an efficient and specific information flow, cells employ scaffold proteins as critical signaling organizers. With the ability to bind multiple signaling molecules, scaffold proteins can sequester signaling components within specific subcellular domains or modulate the efficiency of signal transduction. Scaffolds can also tune the output of signaling pathways by serving as regulatory targets. This review focuses on scaffold proteins associated with the plant GLYCOGEN SYNTHASE KINASE3-like kinase, BRASSINOSTEROID-INSENSITIVE2 (BIN2) that serve as a key negative regulator of brassinosteroid (BR) signaling. Here we summarize the current understanding of how scaffold proteins actively shape BR signaling outputs and crosstalk in plant cells via interactions with BIN2.\",\"PeriodicalId\":502140,\"journal\":{\"name\":\"Plant & Cell Physiology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant & Cell Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pcp/pcae040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant & Cell Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pcp/pcae040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Shaping brassinosteroid signaling through scaffold proteins
Cellular responses to internal and external stimuli are orchestrated by intricate intracellular signaling pathways. To ensure an efficient and specific information flow, cells employ scaffold proteins as critical signaling organizers. With the ability to bind multiple signaling molecules, scaffold proteins can sequester signaling components within specific subcellular domains or modulate the efficiency of signal transduction. Scaffolds can also tune the output of signaling pathways by serving as regulatory targets. This review focuses on scaffold proteins associated with the plant GLYCOGEN SYNTHASE KINASE3-like kinase, BRASSINOSTEROID-INSENSITIVE2 (BIN2) that serve as a key negative regulator of brassinosteroid (BR) signaling. Here we summarize the current understanding of how scaffold proteins actively shape BR signaling outputs and crosstalk in plant cells via interactions with BIN2.