抛物线问题的高阶广义-α方法

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Pouria Behnoudfar, Quanling Deng, Victor M. Calo
{"title":"抛物线问题的高阶广义-α方法","authors":"Pouria Behnoudfar,&nbsp;Quanling Deng,&nbsp;Victor M. Calo","doi":"10.1002/nme.7485","DOIUrl":null,"url":null,"abstract":"<p>We propose a new class of high-order time-marching schemes with dissipation control and unconditional stability for parabolic equations. High-order time integrators can deliver the optimal performance of highly accurate and robust spatial discretizations such as isogeometric analysis. The generalized-<span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n </mrow>\n <annotation>$$ \\alpha $$</annotation>\n </semantics></math> method delivers unconditional stability and second-order accuracy in time and controls the numerical dissipation in the discrete spectrum's high-frequency region. We extend the generalized-<span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n </mrow>\n <annotation>$$ \\alpha $$</annotation>\n </semantics></math> methodology to obtain high-order time marching methods with high accuracy and dissipation control in the discrete high-frequency range. Furthermore, we maintain the original stability region of the second-order generalized-<span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n </mrow>\n <annotation>$$ \\alpha $$</annotation>\n </semantics></math> method in the new higher-order methods; we increase the accuracy of the generalized-<span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n </mrow>\n <annotation>$$ \\alpha $$</annotation>\n </semantics></math> method while keeping the unconditional stability and user-control features on the high-frequency numerical dissipation. The methodology solves <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>&gt;</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>k</mi>\n <mo>∈</mo>\n <mi>ℕ</mi>\n </mrow>\n <annotation>$$ k&gt;1,k\\in \\mathbb{N} $$</annotation>\n </semantics></math> matrix problems and updates the system unknowns, which correspond to higher-order terms in Taylor expansions to obtain <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>3</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mi>k</mi>\n <mo>)</mo>\n <mtext>th</mtext>\n </mrow>\n <annotation>$$ \\left(3/2k\\right)\\mathrm{th} $$</annotation>\n </semantics></math>-order method for even <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation>$$ k $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>3</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mo>)</mo>\n <mtext>th</mtext>\n </mrow>\n <annotation>$$ \\left(3/2k+1/2\\right)\\mathrm{th} $$</annotation>\n </semantics></math>-order for odd <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation>$$ k $$</annotation>\n </semantics></math>. A single parameter <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>ρ</mi>\n </mrow>\n <mrow>\n <mi>∞</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\rho}^{\\infty } $$</annotation>\n </semantics></math> controls the high-frequency dissipation, while the update procedure follows the formulation of the original second-order method. Additionally, we show that our method is A-stable, and for <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>ρ</mi>\n </mrow>\n <mrow>\n <mi>∞</mi>\n </mrow>\n </msup>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ {\\rho}^{\\infty }=0 $$</annotation>\n </semantics></math> we obtain an L-stable method. Furthermore, we extend this strategy to analyze the accuracy order of a generic method. Lastly, we provide numerical examples that validate our analysis of the method and demonstrate its performance. First, we simulate heat propagation; then, we analyze nonlinear problems, such as the Swift–Hohenberg and Cahn–Hilliard phase-field models. To conclude, we compare the method to Runge–Kutta techniques in simulating the Lorenz system.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"125 13","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.7485","citationCount":"0","resultStr":"{\"title\":\"Higher-order generalized-α methods for parabolic problems\",\"authors\":\"Pouria Behnoudfar,&nbsp;Quanling Deng,&nbsp;Victor M. Calo\",\"doi\":\"10.1002/nme.7485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a new class of high-order time-marching schemes with dissipation control and unconditional stability for parabolic equations. High-order time integrators can deliver the optimal performance of highly accurate and robust spatial discretizations such as isogeometric analysis. The generalized-<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n <annotation>$$ \\\\alpha $$</annotation>\\n </semantics></math> method delivers unconditional stability and second-order accuracy in time and controls the numerical dissipation in the discrete spectrum's high-frequency region. We extend the generalized-<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n <annotation>$$ \\\\alpha $$</annotation>\\n </semantics></math> methodology to obtain high-order time marching methods with high accuracy and dissipation control in the discrete high-frequency range. Furthermore, we maintain the original stability region of the second-order generalized-<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n <annotation>$$ \\\\alpha $$</annotation>\\n </semantics></math> method in the new higher-order methods; we increase the accuracy of the generalized-<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n <annotation>$$ \\\\alpha $$</annotation>\\n </semantics></math> method while keeping the unconditional stability and user-control features on the high-frequency numerical dissipation. The methodology solves <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>&gt;</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>k</mi>\\n <mo>∈</mo>\\n <mi>ℕ</mi>\\n </mrow>\\n <annotation>$$ k&gt;1,k\\\\in \\\\mathbb{N} $$</annotation>\\n </semantics></math> matrix problems and updates the system unknowns, which correspond to higher-order terms in Taylor expansions to obtain <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n <mi>k</mi>\\n <mo>)</mo>\\n <mtext>th</mtext>\\n </mrow>\\n <annotation>$$ \\\\left(3/2k\\\\right)\\\\mathrm{th} $$</annotation>\\n </semantics></math>-order method for even <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation>$$ k $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n <mtext>th</mtext>\\n </mrow>\\n <annotation>$$ \\\\left(3/2k+1/2\\\\right)\\\\mathrm{th} $$</annotation>\\n </semantics></math>-order for odd <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation>$$ k $$</annotation>\\n </semantics></math>. A single parameter <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>ρ</mi>\\n </mrow>\\n <mrow>\\n <mi>∞</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\rho}^{\\\\infty } $$</annotation>\\n </semantics></math> controls the high-frequency dissipation, while the update procedure follows the formulation of the original second-order method. Additionally, we show that our method is A-stable, and for <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>ρ</mi>\\n </mrow>\\n <mrow>\\n <mi>∞</mi>\\n </mrow>\\n </msup>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$$ {\\\\rho}^{\\\\infty }=0 $$</annotation>\\n </semantics></math> we obtain an L-stable method. Furthermore, we extend this strategy to analyze the accuracy order of a generic method. Lastly, we provide numerical examples that validate our analysis of the method and demonstrate its performance. First, we simulate heat propagation; then, we analyze nonlinear problems, such as the Swift–Hohenberg and Cahn–Hilliard phase-field models. To conclude, we compare the method to Runge–Kutta techniques in simulating the Lorenz system.</p>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":\"125 13\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.7485\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.7485\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7485","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们针对抛物线方程提出了一类新的具有耗散控制和无条件稳定性的高阶时间行进方案。高阶时间积分器可以为等几何分析等高精度和稳健的空间离散化提供最佳性能。广义-方法在时间上具有无条件稳定性和二阶精度,并能控制离散谱高频区域的数值耗散。我们对广义- 方法进行了扩展,以获得在离散高频范围内具有高精度和耗散控制的高阶时间行进方法。此外,我们在新的高阶方法中保持了二阶广义- 方法的原始稳定区域;我们在提高广义- 方法精度的同时,保持了无条件稳定性和用户对高频数值耗散的控制特性。该方法求解矩阵问题并更新系统未知数,这些未知数对应于泰勒展开式中的高阶项,从而获得偶数的-阶方法和奇数的-阶方法。只需一个参数即可控制高频耗散,而更新程序则遵循原始二阶方法的表述。此外,我们还证明了我们的方法是 A 稳定的,并得到了 L 稳定的方法。此外,我们还扩展了这一策略,以分析通用方法的精度阶次。最后,我们提供了数值示例,以验证我们对该方法的分析,并展示其性能。首先,我们模拟了热传播;然后,我们分析了非线性问题,如 Swift-Hohenberg 和 Cahn-Hilliard 相场模型。最后,我们将该方法与 Runge-Kutta 技术在模拟洛伦兹系统方面进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Higher-order generalized-α methods for parabolic problems

Higher-order generalized-α methods for parabolic problems

We propose a new class of high-order time-marching schemes with dissipation control and unconditional stability for parabolic equations. High-order time integrators can deliver the optimal performance of highly accurate and robust spatial discretizations such as isogeometric analysis. The generalized- α $$ \alpha $$ method delivers unconditional stability and second-order accuracy in time and controls the numerical dissipation in the discrete spectrum's high-frequency region. We extend the generalized- α $$ \alpha $$ methodology to obtain high-order time marching methods with high accuracy and dissipation control in the discrete high-frequency range. Furthermore, we maintain the original stability region of the second-order generalized- α $$ \alpha $$ method in the new higher-order methods; we increase the accuracy of the generalized- α $$ \alpha $$ method while keeping the unconditional stability and user-control features on the high-frequency numerical dissipation. The methodology solves k > 1 , k $$ k>1,k\in \mathbb{N} $$ matrix problems and updates the system unknowns, which correspond to higher-order terms in Taylor expansions to obtain ( 3 / 2 k ) th $$ \left(3/2k\right)\mathrm{th} $$ -order method for even k $$ k $$ and ( 3 / 2 k + 1 / 2 ) th $$ \left(3/2k+1/2\right)\mathrm{th} $$ -order for odd k $$ k $$ . A single parameter ρ $$ {\rho}^{\infty } $$ controls the high-frequency dissipation, while the update procedure follows the formulation of the original second-order method. Additionally, we show that our method is A-stable, and for ρ = 0 $$ {\rho}^{\infty }=0 $$ we obtain an L-stable method. Furthermore, we extend this strategy to analyze the accuracy order of a generic method. Lastly, we provide numerical examples that validate our analysis of the method and demonstrate its performance. First, we simulate heat propagation; then, we analyze nonlinear problems, such as the Swift–Hohenberg and Cahn–Hilliard phase-field models. To conclude, we compare the method to Runge–Kutta techniques in simulating the Lorenz system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信