D. O. Kolesnikov, E. R. Grigorieva, M. A. Nomerovskaya, D. S. Reshetin, A. V. Shalygin, E. V. Kaznacheyeva
{"title":"CaCCinh-A01 抑制钙激活氯化物 ANO6 通道的机制","authors":"D. O. Kolesnikov, E. R. Grigorieva, M. A. Nomerovskaya, D. S. Reshetin, A. V. Shalygin, E. V. Kaznacheyeva","doi":"10.1134/S1990747824700041","DOIUrl":null,"url":null,"abstract":"<p>Proteins of the anoctamine family (ANO) form calcium-activated chloride channels (CaCC) and phospholipid scramblases. The ANO6 (TMEM16F) protein, which combines the functions of a calcium-dependent scramblase and those of an ion channel, is considered as a molecular target for the treatment of blood clotting disorders, COVID-19-associated pneumonia, neurodegenerative diseases, and other pathologies. CaCCinh-A01, which is a channel blocker of the ANO family, is studied as a potential pharmacological drug. Previously, the effect of this inhibitor was studied using methods representing the integral ion current through the membrane, which does not allow the properties of single channels to be distinguished. Therefore, it remains unknown which characteristics of single channels are sensitive to the blocker: the channel open probability, the current amplitude, or the dwelling time of the channel open state. By registration of single ANO6 channels in HEK293 cells, we showed that the action of the inhibitor is due to a decrease in both the current amplitude and the dwelling time of the single ANO6 channels open state, which, in turn, leads to a decrease in their open state probability. Thus, we have characterized the mechanism of current reduction through ANO6 channels by the inhibitor CaCCinh A01.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"18 1","pages":"31 - 35"},"PeriodicalIF":1.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Mechanism of Calcium-Activated Chloride ANO6 Channel Inhibition by CaCCinh-A01\",\"authors\":\"D. O. Kolesnikov, E. R. Grigorieva, M. A. Nomerovskaya, D. S. Reshetin, A. V. Shalygin, E. V. Kaznacheyeva\",\"doi\":\"10.1134/S1990747824700041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Proteins of the anoctamine family (ANO) form calcium-activated chloride channels (CaCC) and phospholipid scramblases. The ANO6 (TMEM16F) protein, which combines the functions of a calcium-dependent scramblase and those of an ion channel, is considered as a molecular target for the treatment of blood clotting disorders, COVID-19-associated pneumonia, neurodegenerative diseases, and other pathologies. CaCCinh-A01, which is a channel blocker of the ANO family, is studied as a potential pharmacological drug. Previously, the effect of this inhibitor was studied using methods representing the integral ion current through the membrane, which does not allow the properties of single channels to be distinguished. Therefore, it remains unknown which characteristics of single channels are sensitive to the blocker: the channel open probability, the current amplitude, or the dwelling time of the channel open state. By registration of single ANO6 channels in HEK293 cells, we showed that the action of the inhibitor is due to a decrease in both the current amplitude and the dwelling time of the single ANO6 channels open state, which, in turn, leads to a decrease in their open state probability. Thus, we have characterized the mechanism of current reduction through ANO6 channels by the inhibitor CaCCinh A01.</p>\",\"PeriodicalId\":484,\"journal\":{\"name\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"volume\":\"18 1\",\"pages\":\"31 - 35\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990747824700041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747824700041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The Mechanism of Calcium-Activated Chloride ANO6 Channel Inhibition by CaCCinh-A01
Proteins of the anoctamine family (ANO) form calcium-activated chloride channels (CaCC) and phospholipid scramblases. The ANO6 (TMEM16F) protein, which combines the functions of a calcium-dependent scramblase and those of an ion channel, is considered as a molecular target for the treatment of blood clotting disorders, COVID-19-associated pneumonia, neurodegenerative diseases, and other pathologies. CaCCinh-A01, which is a channel blocker of the ANO family, is studied as a potential pharmacological drug. Previously, the effect of this inhibitor was studied using methods representing the integral ion current through the membrane, which does not allow the properties of single channels to be distinguished. Therefore, it remains unknown which characteristics of single channels are sensitive to the blocker: the channel open probability, the current amplitude, or the dwelling time of the channel open state. By registration of single ANO6 channels in HEK293 cells, we showed that the action of the inhibitor is due to a decrease in both the current amplitude and the dwelling time of the single ANO6 channels open state, which, in turn, leads to a decrease in their open state probability. Thus, we have characterized the mechanism of current reduction through ANO6 channels by the inhibitor CaCCinh A01.
期刊介绍:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.