论有限生成交换准域的最小配线生成集

IF 0.6 4区 数学 Q3 MATHEMATICS
Vítězslav Kala, Lucien Šíma
{"title":"论有限生成交换准域的最小配线生成集","authors":"Vítězslav Kala,&nbsp;Lucien Šíma","doi":"10.1007/s00012-024-00853-9","DOIUrl":null,"url":null,"abstract":"<div><p>We study ideal-simple commutative semirings and summarize the results giving their classification, in particular when they are finitely generated. In the principal case of (para)semifields, we then consider their minimal number of generators and show that it grows linearly with the depth of an associated rooted forest.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On minimal semiring generating sets of finitely generated commutative parasemifields\",\"authors\":\"Vítězslav Kala,&nbsp;Lucien Šíma\",\"doi\":\"10.1007/s00012-024-00853-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study ideal-simple commutative semirings and summarize the results giving their classification, in particular when they are finitely generated. In the principal case of (para)semifields, we then consider their minimal number of generators and show that it grows linearly with the depth of an associated rooted forest.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-024-00853-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-024-00853-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了理想简单交换半域,并总结了它们的分类结果,特别是当它们是有限生成时。在(副)半场的主要情况下,我们考虑它们的最小生成数,并证明它与相关根森林的深度呈线性增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On minimal semiring generating sets of finitely generated commutative parasemifields

On minimal semiring generating sets of finitely generated commutative parasemifields

On minimal semiring generating sets of finitely generated commutative parasemifields

We study ideal-simple commutative semirings and summarize the results giving their classification, in particular when they are finitely generated. In the principal case of (para)semifields, we then consider their minimal number of generators and show that it grows linearly with the depth of an associated rooted forest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信