{"title":"利用固态 NMR 光谱预测含有蔗糖和曲哈糖的冻干人血清白蛋白制剂的稳定性:储存温度对 1H T1 松弛时间的影响","authors":"","doi":"10.1208/s12248-024-00900-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In a lyophilized protein/disaccharide system, the ability of the disaccharide to form a homogeneous mixture with the protein and to slow the protein mobility dictates the stabilization potential of the formulation. Human serum albumin was lyophilized with sucrose or trehalose in histidine, phosphate, or citrate buffer. <sup>1</sup>H T<sub>1</sub> relaxation times were measured by solid-state NMR spectroscopy and were used to assess the homogeneity and mobility of the samples after zero, six, and twelve months at different temperatures. The mobility of the samples decreased after 6 and 12 months storage at elevated temperatures, consistent with structural relaxation of the amorphous disaccharide matrix. Formulations with sucrose had lower mobility and greater stability than formulations with trehalose.</p>","PeriodicalId":501692,"journal":{"name":"The AAPS Journal","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the Stability of Lyophilized Human Serum Albumin Formulations Containing Sucrose and Trehalose Using Solid-State NMR Spectroscopy: Effect of Storage Temperature on 1H T1 Relaxation Times\",\"authors\":\"\",\"doi\":\"10.1208/s12248-024-00900-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In a lyophilized protein/disaccharide system, the ability of the disaccharide to form a homogeneous mixture with the protein and to slow the protein mobility dictates the stabilization potential of the formulation. Human serum albumin was lyophilized with sucrose or trehalose in histidine, phosphate, or citrate buffer. <sup>1</sup>H T<sub>1</sub> relaxation times were measured by solid-state NMR spectroscopy and were used to assess the homogeneity and mobility of the samples after zero, six, and twelve months at different temperatures. The mobility of the samples decreased after 6 and 12 months storage at elevated temperatures, consistent with structural relaxation of the amorphous disaccharide matrix. Formulations with sucrose had lower mobility and greater stability than formulations with trehalose.</p>\",\"PeriodicalId\":501692,\"journal\":{\"name\":\"The AAPS Journal\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The AAPS Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1208/s12248-024-00900-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The AAPS Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1208/s12248-024-00900-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting the Stability of Lyophilized Human Serum Albumin Formulations Containing Sucrose and Trehalose Using Solid-State NMR Spectroscopy: Effect of Storage Temperature on 1H T1 Relaxation Times
Abstract
In a lyophilized protein/disaccharide system, the ability of the disaccharide to form a homogeneous mixture with the protein and to slow the protein mobility dictates the stabilization potential of the formulation. Human serum albumin was lyophilized with sucrose or trehalose in histidine, phosphate, or citrate buffer. 1H T1 relaxation times were measured by solid-state NMR spectroscopy and were used to assess the homogeneity and mobility of the samples after zero, six, and twelve months at different temperatures. The mobility of the samples decreased after 6 and 12 months storage at elevated temperatures, consistent with structural relaxation of the amorphous disaccharide matrix. Formulations with sucrose had lower mobility and greater stability than formulations with trehalose.