弱酸性药物体外生物制药数据的机理建模:为基于生理学的生物制药建模推导基本参数的途径

Venkata Krishna Kowthavarapu, Nitin Bharat Charbe, Churni Gupta, Tatiana Iakovleva, Cordula Stillhart, Neil John Parrott, Stephan Schmidt, Rodrigo Cristofoletti
{"title":"弱酸性药物体外生物制药数据的机理建模:为基于生理学的生物制药建模推导基本参数的途径","authors":"Venkata Krishna Kowthavarapu, Nitin Bharat Charbe, Churni Gupta, Tatiana Iakovleva, Cordula Stillhart, Neil John Parrott, Stephan Schmidt, Rodrigo Cristofoletti","doi":"10.1208/s12248-024-00912-y","DOIUrl":null,"url":null,"abstract":"<p>Mechanistic modeling of <i>in vitro</i> experiments using metabolic enzyme systems enables the extrapolation of metabolic clearance for <i>in vitro-in vivo</i> predictions. This is particularly important for successful clearance predictions using physiologically based pharmacokinetic (PBPK) modeling. The concept of mechanistic modeling can also be extended to biopharmaceutics, where <i>in vitro</i> data is used to predict the <i>in vivo</i> pharmacokinetic profile of the drug. This approach further allows for the identification of parameters that are critical for oral drug absorption <i>in vivo</i>. However, the routine use of this analysis approach has been hindered by the lack of an integrated analysis workflow. The objective of this tutorial is to (1) review processes and parameters contributing to oral drug absorption in increasing levels of complexity, (2) outline a general physiologically based biopharmaceutic modeling workflow for weak acids, and (3) illustrate the outlined concepts via an ibuprofen (i.e., a weak, poorly soluble acid) case example in order to provide practical guidance on how to integrate biopharmaceutic and physiological data to better understand oral drug absorption. In the future, we plan to explore the usefulness of this tutorial/roadmap to inform the development of PBPK models for BCS 2 weak bases, by expanding the stepwise modeling approach to accommodate more intricate scenarios, including the presence of diprotic basic compounds and acidifying agents within the formulation.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":501692,"journal":{"name":"The AAPS Journal","volume":"2016 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Modeling of In Vitro Biopharmaceutic Data for a Weak Acid Drug: A Pathway Towards Deriving Fundamental Parameters for Physiologically Based Biopharmaceutic Modeling\",\"authors\":\"Venkata Krishna Kowthavarapu, Nitin Bharat Charbe, Churni Gupta, Tatiana Iakovleva, Cordula Stillhart, Neil John Parrott, Stephan Schmidt, Rodrigo Cristofoletti\",\"doi\":\"10.1208/s12248-024-00912-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mechanistic modeling of <i>in vitro</i> experiments using metabolic enzyme systems enables the extrapolation of metabolic clearance for <i>in vitro-in vivo</i> predictions. This is particularly important for successful clearance predictions using physiologically based pharmacokinetic (PBPK) modeling. The concept of mechanistic modeling can also be extended to biopharmaceutics, where <i>in vitro</i> data is used to predict the <i>in vivo</i> pharmacokinetic profile of the drug. This approach further allows for the identification of parameters that are critical for oral drug absorption <i>in vivo</i>. However, the routine use of this analysis approach has been hindered by the lack of an integrated analysis workflow. The objective of this tutorial is to (1) review processes and parameters contributing to oral drug absorption in increasing levels of complexity, (2) outline a general physiologically based biopharmaceutic modeling workflow for weak acids, and (3) illustrate the outlined concepts via an ibuprofen (i.e., a weak, poorly soluble acid) case example in order to provide practical guidance on how to integrate biopharmaceutic and physiological data to better understand oral drug absorption. In the future, we plan to explore the usefulness of this tutorial/roadmap to inform the development of PBPK models for BCS 2 weak bases, by expanding the stepwise modeling approach to accommodate more intricate scenarios, including the presence of diprotic basic compounds and acidifying agents within the formulation.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":501692,\"journal\":{\"name\":\"The AAPS Journal\",\"volume\":\"2016 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The AAPS Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1208/s12248-024-00912-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The AAPS Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1208/s12248-024-00912-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用代谢酶系统对体外实验进行机理建模,可以外推代谢清除率,进行体外-体内预测。这对于利用生理学药代动力学(PBPK)建模成功预测清除率尤为重要。机理建模的概念也可扩展到生物药剂学,即利用体外数据预测药物的体内药代动力学特征。这种方法还能进一步确定对体内口服药物吸收至关重要的参数。然而,由于缺乏综合分析工作流程,这种分析方法的常规使用受到了阻碍。本教程的目的是:(1) 回顾导致口服药物吸收的过程和参数的复杂程度;(2) 概述基于生理学的弱酸生物药剂学建模工作流程;(3) 通过布洛芬(即弱酸、溶解性差的酸)案例说明概述的概念,以便为如何整合生物药剂学和生理学数据以更好地理解口服药物吸收提供实用指导。未来,我们计划探索本教程/路线图的实用性,为 BCS 2 弱碱 PBPK 模型的开发提供参考,方法是扩展逐步建模方法,以适应更复杂的情况,包括制剂中存在二丙基碱性化合物和酸化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic Modeling of In Vitro Biopharmaceutic Data for a Weak Acid Drug: A Pathway Towards Deriving Fundamental Parameters for Physiologically Based Biopharmaceutic Modeling

Mechanistic modeling of in vitro experiments using metabolic enzyme systems enables the extrapolation of metabolic clearance for in vitro-in vivo predictions. This is particularly important for successful clearance predictions using physiologically based pharmacokinetic (PBPK) modeling. The concept of mechanistic modeling can also be extended to biopharmaceutics, where in vitro data is used to predict the in vivo pharmacokinetic profile of the drug. This approach further allows for the identification of parameters that are critical for oral drug absorption in vivo. However, the routine use of this analysis approach has been hindered by the lack of an integrated analysis workflow. The objective of this tutorial is to (1) review processes and parameters contributing to oral drug absorption in increasing levels of complexity, (2) outline a general physiologically based biopharmaceutic modeling workflow for weak acids, and (3) illustrate the outlined concepts via an ibuprofen (i.e., a weak, poorly soluble acid) case example in order to provide practical guidance on how to integrate biopharmaceutic and physiological data to better understand oral drug absorption. In the future, we plan to explore the usefulness of this tutorial/roadmap to inform the development of PBPK models for BCS 2 weak bases, by expanding the stepwise modeling approach to accommodate more intricate scenarios, including the presence of diprotic basic compounds and acidifying agents within the formulation.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信