基于位置的流体模拟,用于路面裂缝的机器人喷射密封

IF 4.2 2区 计算机科学 Q2 ROBOTICS
Samuel D. Schaefer, Jie Xu, Damian Palin, Abir Al-Tabbaa, Fumiya Iida
{"title":"基于位置的流体模拟,用于路面裂缝的机器人喷射密封","authors":"Samuel D. Schaefer,&nbsp;Jie Xu,&nbsp;Damian Palin,&nbsp;Abir Al-Tabbaa,&nbsp;Fumiya Iida","doi":"10.1002/rob.22339","DOIUrl":null,"url":null,"abstract":"<p>Automated crack sealing could significantly benefit the maintenance of road pavements, but there is difficulty in depositing the correct volume of sealant material into the hidden crack space. A simulated model of the material flow within a crack space would allow the development of a predictive control scheme, such that the repair robot can apply suitable trajectories and operational parameters to accomplish neatly sealed surfaces. For the first time, the position-based fluid (PBF) method, a computationally cheap and fast but approximate model of fluid flows, is studied for its feasibility for sealant flow simulation in the robotic injection crack sealing scenario. A Real-to-Sim experiment is performed, in which a PBF simulation of sealant in a virtual robotic crack sealing environment is mirrored from the physical lab setup. The fluid simulation is tuned to match the real-world dynamics through comparison with 132 simulation runs, varying the artificial viscosity parameters <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>U</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:15564959:media:rob22339:rob22339-math-0001\" wiley:location=\"equation/rob22339-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> (fluid–fluid viscous interaction) and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:15564959:media:rob22339:rob22339-math-0002\" wiley:location=\"equation/rob22339-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> (fluid–wall viscous interaction). It was found that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>U</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:15564959:media:rob22339:rob22339-math-0003\" wiley:location=\"equation/rob22339-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> had a varied three-stage influence on the simulation error while <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>D</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:15564959:media:rob22339:rob22339-math-0004\" wiley:location=\"equation/rob22339-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>'s negative influence on the simulation error only effectively applied to fluids satisfying <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1</mn>\n \n <mo>&lt;</mo>\n \n <mi>U</mi>\n \n <mo>&lt;</mo>\n \n <mn>100</mn>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:15564959:media:rob22339:rob22339-math-0005\" wiley:location=\"equation/rob22339-math-0005.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;\\unicode{x0003C}&lt;/mo&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;mo&gt;\\unicode{x0003C}&lt;/mo&gt;&lt;mn&gt;100&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. Through comparing the physical and virtual crack sealing results, the simulation was validated with an average fluid level error of 1.26 mm along a 3.1 mm wide, 16 mm deep and 80 mm long artificial crack, which shows the usefulness of the PBF method for robotic injection sealing. The accuracy and computational requirements of the PBF method are also discussed.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 5","pages":"1438-1451"},"PeriodicalIF":4.2000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22339","citationCount":"0","resultStr":"{\"title\":\"Position-based fluid simulation for robotic injection sealing of pavement cracks\",\"authors\":\"Samuel D. Schaefer,&nbsp;Jie Xu,&nbsp;Damian Palin,&nbsp;Abir Al-Tabbaa,&nbsp;Fumiya Iida\",\"doi\":\"10.1002/rob.22339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Automated crack sealing could significantly benefit the maintenance of road pavements, but there is difficulty in depositing the correct volume of sealant material into the hidden crack space. A simulated model of the material flow within a crack space would allow the development of a predictive control scheme, such that the repair robot can apply suitable trajectories and operational parameters to accomplish neatly sealed surfaces. For the first time, the position-based fluid (PBF) method, a computationally cheap and fast but approximate model of fluid flows, is studied for its feasibility for sealant flow simulation in the robotic injection crack sealing scenario. A Real-to-Sim experiment is performed, in which a PBF simulation of sealant in a virtual robotic crack sealing environment is mirrored from the physical lab setup. The fluid simulation is tuned to match the real-world dynamics through comparison with 132 simulation runs, varying the artificial viscosity parameters <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>U</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:15564959:media:rob22339:rob22339-math-0001\\\" wiley:location=\\\"equation/rob22339-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> (fluid–fluid viscous interaction) and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:15564959:media:rob22339:rob22339-math-0002\\\" wiley:location=\\\"equation/rob22339-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> (fluid–wall viscous interaction). It was found that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>U</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:15564959:media:rob22339:rob22339-math-0003\\\" wiley:location=\\\"equation/rob22339-math-0003.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> had a varied three-stage influence on the simulation error while <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:15564959:media:rob22339:rob22339-math-0004\\\" wiley:location=\\\"equation/rob22339-math-0004.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>'s negative influence on the simulation error only effectively applied to fluids satisfying <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>&lt;</mo>\\n \\n <mi>U</mi>\\n \\n <mo>&lt;</mo>\\n \\n <mn>100</mn>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:15564959:media:rob22339:rob22339-math-0005\\\" wiley:location=\\\"equation/rob22339-math-0005.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;\\\\unicode{x0003C}&lt;/mo&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x0003C}&lt;/mo&gt;&lt;mn&gt;100&lt;/mn&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>. Through comparing the physical and virtual crack sealing results, the simulation was validated with an average fluid level error of 1.26 mm along a 3.1 mm wide, 16 mm deep and 80 mm long artificial crack, which shows the usefulness of the PBF method for robotic injection sealing. The accuracy and computational requirements of the PBF method are also discussed.</p>\",\"PeriodicalId\":192,\"journal\":{\"name\":\"Journal of Field Robotics\",\"volume\":\"41 5\",\"pages\":\"1438-1451\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22339\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Field Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rob.22339\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22339","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

自动裂缝密封可大大有利于路面的维护,但要将正确量的密封材料注入隐蔽的裂缝空间却存在困难。如果能建立裂缝空间内材料流动的模拟模型,就可以开发出一种预测控制方案,使维修机器人能够应用合适的轨迹和操作参数,从而实现整齐的密封表面。基于位置的流体(PBF)方法是一种计算成本低、速度快但近似的流体流动模型,本文首次研究了该方法在机器人喷射裂缝密封方案中用于密封剂流动模拟的可行性。进行了一次 "真实到模拟 "实验,在虚拟机器人裂缝密封环境中对密封剂进行 PBF 模拟,并与物理实验室设置进行镜像。通过与 132 次模拟运行进行比较,改变人工粘度参数(流体与流体之间的粘滞相互作用)和(流体与墙壁之间的粘滞相互作用),对流体模拟进行调整,使其与真实世界的动态相匹配。结果发现,''对模拟误差的影响分为三个阶段,而''对模拟误差的负面影响仅有效适用于满足''要求的流体。通过比较物理和虚拟裂缝密封结果,仿真得到了验证,沿宽 3.1 毫米、深 16 毫米、长 80 毫米的人工裂缝的平均液位误差为 1.26 毫米,这表明 PBF 方法适用于机器人注塑密封。此外,还讨论了 PBF 方法的精度和计算要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Position-based fluid simulation for robotic injection sealing of pavement cracks

Position-based fluid simulation for robotic injection sealing of pavement cracks

Automated crack sealing could significantly benefit the maintenance of road pavements, but there is difficulty in depositing the correct volume of sealant material into the hidden crack space. A simulated model of the material flow within a crack space would allow the development of a predictive control scheme, such that the repair robot can apply suitable trajectories and operational parameters to accomplish neatly sealed surfaces. For the first time, the position-based fluid (PBF) method, a computationally cheap and fast but approximate model of fluid flows, is studied for its feasibility for sealant flow simulation in the robotic injection crack sealing scenario. A Real-to-Sim experiment is performed, in which a PBF simulation of sealant in a virtual robotic crack sealing environment is mirrored from the physical lab setup. The fluid simulation is tuned to match the real-world dynamics through comparison with 132 simulation runs, varying the artificial viscosity parameters U <math altimg="urn:x-wiley:15564959:media:rob22339:rob22339-math-0001" wiley:location="equation/rob22339-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>U</mi></mrow></mrow></math> (fluid–fluid viscous interaction) and D <math altimg="urn:x-wiley:15564959:media:rob22339:rob22339-math-0002" wiley:location="equation/rob22339-math-0002.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>D</mi></mrow></mrow></math> (fluid–wall viscous interaction). It was found that U <math altimg="urn:x-wiley:15564959:media:rob22339:rob22339-math-0003" wiley:location="equation/rob22339-math-0003.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>U</mi></mrow></mrow></math> had a varied three-stage influence on the simulation error while D <math altimg="urn:x-wiley:15564959:media:rob22339:rob22339-math-0004" wiley:location="equation/rob22339-math-0004.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>D</mi></mrow></mrow></math> 's negative influence on the simulation error only effectively applied to fluids satisfying 1 < U < 100 <math altimg="urn:x-wiley:15564959:media:rob22339:rob22339-math-0005" wiley:location="equation/rob22339-math-0005.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>1</mn><mo>\unicode{x0003C}</mo><mi>U</mi><mo>\unicode{x0003C}</mo><mn>100</mn></mrow></mrow></math> . Through comparing the physical and virtual crack sealing results, the simulation was validated with an average fluid level error of 1.26 mm along a 3.1 mm wide, 16 mm deep and 80 mm long artificial crack, which shows the usefulness of the PBF method for robotic injection sealing. The accuracy and computational requirements of the PBF method are also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信