用于轮轨接触分析的准静态模拟与多体动态模拟的比较

IF 2.6 2区 工程技术 Q2 MECHANICS
P. A. P. Pacheco, P. G. Ramos, T. L. Sá, G. F. M. Santos, A. Gay Neto, A. A. Santos
{"title":"用于轮轨接触分析的准静态模拟与多体动态模拟的比较","authors":"P. A. P. Pacheco, P. G. Ramos, T. L. Sá, G. F. M. Santos, A. Gay Neto, A. A. Santos","doi":"10.1007/s11044-024-09979-z","DOIUrl":null,"url":null,"abstract":"<p>Rails experience contact with a range of wheel profiles that pummel their surface at different points and with different intensities. This work compares two methods for evaluating pummeling analyzes for the wheel-rail interaction: simplified quasi-static model and multibody dynamics simulations. The first is solved with the GIRAFFE program and simulates the interaction of a single wheelset with the rail in a quasi-static approach. In the second, the full dynamics of a railway wagon on a track layout are evaluated using the multibody dynamics simulation programs SIMPACK<sup>®</sup> and VAMPIRE<sup>®</sup>. The proposal for a quasi-static model is to reduce the time and computational effort to perform a pummeling analysis and quickly evaluate thousands of cases of wheel-rail contact. Track parameters and vehicle loads of a heavy haul railway are considered for the simulations. The results showed that the quasi-static model has a good correlation with the dynamic models on tangent track sections. For the curved sections, differences were observed in the distribution of pressures due to the absence of creep forces in the quasi-static model. The comparison between the models also showed slightly different results due to the different calculation of contact in each approach. The quasi-static approach reduced the time consuming by at least 73.4% over the multibody approach. Notwithstanding, the proposed model shows to be promising in replacing complete dynamic analysis for time-consuming tasks such as pummeling.</p>","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison between quasi-static and multibody dynamic simulations for wheel-rail contact analysis\",\"authors\":\"P. A. P. Pacheco, P. G. Ramos, T. L. Sá, G. F. M. Santos, A. Gay Neto, A. A. Santos\",\"doi\":\"10.1007/s11044-024-09979-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rails experience contact with a range of wheel profiles that pummel their surface at different points and with different intensities. This work compares two methods for evaluating pummeling analyzes for the wheel-rail interaction: simplified quasi-static model and multibody dynamics simulations. The first is solved with the GIRAFFE program and simulates the interaction of a single wheelset with the rail in a quasi-static approach. In the second, the full dynamics of a railway wagon on a track layout are evaluated using the multibody dynamics simulation programs SIMPACK<sup>®</sup> and VAMPIRE<sup>®</sup>. The proposal for a quasi-static model is to reduce the time and computational effort to perform a pummeling analysis and quickly evaluate thousands of cases of wheel-rail contact. Track parameters and vehicle loads of a heavy haul railway are considered for the simulations. The results showed that the quasi-static model has a good correlation with the dynamic models on tangent track sections. For the curved sections, differences were observed in the distribution of pressures due to the absence of creep forces in the quasi-static model. The comparison between the models also showed slightly different results due to the different calculation of contact in each approach. The quasi-static approach reduced the time consuming by at least 73.4% over the multibody approach. Notwithstanding, the proposed model shows to be promising in replacing complete dynamic analysis for time-consuming tasks such as pummeling.</p>\",\"PeriodicalId\":49792,\"journal\":{\"name\":\"Multibody System Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multibody System Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11044-024-09979-z\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multibody System Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11044-024-09979-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

钢轨与不同轮廓的车轮接触,车轮会在不同点以不同强度撞击钢轨表面。这项研究比较了两种评估轮轨相互作用的冲击分析方法:简化准静态模型和多体动力学模拟。第一种方法使用 GIRAFFE 程序求解,以准静态方法模拟单个轮组与轨道的相互作用。第二种是使用多体动力学仿真程序 SIMPACK® 和 VAMPIRE® 评估轨道布局上铁路货车的全部动力学特性。提出准静态模型的目的是为了减少进行冲击分析的时间和计算量,并快速评估数以千计的轮轨接触情况。模拟时考虑了重载铁路的轨道参数和车辆载荷。结果表明,在切线轨道区段,准静态模型与动态模型具有良好的相关性。对于曲线路段,由于准静态模型中不存在蠕变力,因此在压力分布方面出现了差异。由于每种方法对接触的计算方法不同,模型之间的比较结果也略有不同。准静态方法比多体方法至少减少了 73.4% 的耗时。尽管如此,所提出的模型在取代耗时的完整动态分析方面(如捣固)还是大有可为的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparison between quasi-static and multibody dynamic simulations for wheel-rail contact analysis

Comparison between quasi-static and multibody dynamic simulations for wheel-rail contact analysis

Rails experience contact with a range of wheel profiles that pummel their surface at different points and with different intensities. This work compares two methods for evaluating pummeling analyzes for the wheel-rail interaction: simplified quasi-static model and multibody dynamics simulations. The first is solved with the GIRAFFE program and simulates the interaction of a single wheelset with the rail in a quasi-static approach. In the second, the full dynamics of a railway wagon on a track layout are evaluated using the multibody dynamics simulation programs SIMPACK® and VAMPIRE®. The proposal for a quasi-static model is to reduce the time and computational effort to perform a pummeling analysis and quickly evaluate thousands of cases of wheel-rail contact. Track parameters and vehicle loads of a heavy haul railway are considered for the simulations. The results showed that the quasi-static model has a good correlation with the dynamic models on tangent track sections. For the curved sections, differences were observed in the distribution of pressures due to the absence of creep forces in the quasi-static model. The comparison between the models also showed slightly different results due to the different calculation of contact in each approach. The quasi-static approach reduced the time consuming by at least 73.4% over the multibody approach. Notwithstanding, the proposed model shows to be promising in replacing complete dynamic analysis for time-consuming tasks such as pummeling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
17.60%
发文量
46
审稿时长
12 months
期刊介绍: The journal Multibody System Dynamics treats theoretical and computational methods in rigid and flexible multibody systems, their application, and the experimental procedures used to validate the theoretical foundations. The research reported addresses computational and experimental aspects and their application to classical and emerging fields in science and technology. Both development and application aspects of multibody dynamics are relevant, in particular in the fields of control, optimization, real-time simulation, parallel computation, workspace and path planning, reliability, and durability. The journal also publishes articles covering application fields such as vehicle dynamics, aerospace technology, robotics and mechatronics, machine dynamics, crashworthiness, biomechanics, artificial intelligence, and system identification if they involve or contribute to the field of Multibody System Dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信