HeterMM:将内存内索引应用于基于异构内存的键值存储

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yunhong Ji, Wentao Huang, Xuan Zhou
{"title":"HeterMM:将内存内索引应用于基于异构内存的键值存储","authors":"Yunhong Ji, Wentao Huang, Xuan Zhou","doi":"10.1007/s11704-024-3713-0","DOIUrl":null,"url":null,"abstract":"<p>We propose HeterMM, a versatile framework that leverages in-DRAM indexes in KV stores on heterogeneous memory. HeterMM incorporates a plug-in programming model, allowing for the integration of various types of indexes. By prioritizing the maintenance of both index and hot data in DRAM, HeterMM maximizes the utilization of the superior performance of DRAM. Our evaluation demonstrates that HeterMM outperforms existing state-of-the-art frameworks that convert in-DRAM indexes to persistent ones. Furthermore, HeterMM can surpass NVM-specific KV stores by carefully selecting the appropriate index for specific scenarios.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"36 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HeterMM: applying in-DRAM index to heterogeneous memory-based key-value stores\",\"authors\":\"Yunhong Ji, Wentao Huang, Xuan Zhou\",\"doi\":\"10.1007/s11704-024-3713-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose HeterMM, a versatile framework that leverages in-DRAM indexes in KV stores on heterogeneous memory. HeterMM incorporates a plug-in programming model, allowing for the integration of various types of indexes. By prioritizing the maintenance of both index and hot data in DRAM, HeterMM maximizes the utilization of the superior performance of DRAM. Our evaluation demonstrates that HeterMM outperforms existing state-of-the-art frameworks that convert in-DRAM indexes to persistent ones. Furthermore, HeterMM can surpass NVM-specific KV stores by carefully selecting the appropriate index for specific scenarios.</p>\",\"PeriodicalId\":12640,\"journal\":{\"name\":\"Frontiers of Computer Science\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11704-024-3713-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-024-3713-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出的 HeterMM 是一个多功能框架,可在异构内存的 KV 存储中利用内存中的索引。HeterMM 采用插件编程模型,允许集成各种类型的索引。通过优先在 DRAM 中维护索引和热数据,HeterMM 最大限度地利用了 DRAM 的卓越性能。我们的评估表明,HeterMM 优于将 DRAM 中的索引转换为持久性索引的现有先进框架。此外,HeterMM 还能通过为特定场景精心选择合适的索引,超越特定于 NVM 的 KV 存储。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HeterMM: applying in-DRAM index to heterogeneous memory-based key-value stores

We propose HeterMM, a versatile framework that leverages in-DRAM indexes in KV stores on heterogeneous memory. HeterMM incorporates a plug-in programming model, allowing for the integration of various types of indexes. By prioritizing the maintenance of both index and hot data in DRAM, HeterMM maximizes the utilization of the superior performance of DRAM. Our evaluation demonstrates that HeterMM outperforms existing state-of-the-art frameworks that convert in-DRAM indexes to persistent ones. Furthermore, HeterMM can surpass NVM-specific KV stores by carefully selecting the appropriate index for specific scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Computer Science
Frontiers of Computer Science COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
8.60
自引率
2.40%
发文量
799
审稿时长
6-12 weeks
期刊介绍: Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信