用于超级电容器和氧评价反应特性的脱氧核糖核酸支架和封装一维氢氧化钆(III)纳米棒

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Johnbosco Yesuraj, Jinsun Kim, Rui Yang, Kibum Kim
{"title":"用于超级电容器和氧评价反应特性的脱氧核糖核酸支架和封装一维氢氧化钆(III)纳米棒","authors":"Johnbosco Yesuraj, Jinsun Kim, Rui Yang, Kibum Kim","doi":"10.1007/s42114-024-00881-y","DOIUrl":null,"url":null,"abstract":"<p>Fabricating advanced nanomaterials with multiple functionalities is an intriguing approach to leveraging clean and sustainable energy technologies. The study elucidates the scaffold and encapsulation capabilities of deoxyribonucleic acid (DNA), demonstrating the influence of different DNA concentrations on the structural and electrochemical properties of Gd(OH)<sub>3</sub> nanorods. As evidence of concept application, the optimal Gd(OH)<sub>3</sub>-DNA-60 electrode delivers a specific capacity of 346 C g<sup>−1</sup> (576.6 F g<sup>−1</sup>) at 1 A g<sup>−1</sup> and a high rate capability. Interestingly, it provides superior cyclic stability with 98% initial capacity retention after 5000 charge/discharge cycles at 20 A g<sup>−1</sup>. The Gd(OH)<sub>3</sub>-DNA-60//activated carbon (AC) asymmetric device delivers the specific capacity of 151 C g<sup>−1</sup> (107.8 F g<sup>−1</sup>) at 1 A g<sup>−1</sup> with a cell voltage of 1.4 V. It provides the energy and power densities of 29.3 and 799.6 W kg<sup>−1</sup>, respectively, and withstands 95% of initial capacity after 10,000 cycles at 10 A g<sup>−1</sup>. In OER analysis, increasing DNA concentration lowers overpotential, Tafel slope, and resistance while enhancing ECSA characteristics. After the stability studies, the physicochemical experiments confirmed the structural stability of the composite material. The results indicate that the proposed approach is a significant method to tune structures and improve the electrochemical properties of nanomaterials for future energy storage and conversion applications.</p>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":null,"pages":null},"PeriodicalIF":23.2000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deoxyribonucleic acid scaffolded and encapsulated one-dimensional gadolinium(III) hydroxide nanorods for supercapacitors and oxygen evaluation reaction properties\",\"authors\":\"Johnbosco Yesuraj, Jinsun Kim, Rui Yang, Kibum Kim\",\"doi\":\"10.1007/s42114-024-00881-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fabricating advanced nanomaterials with multiple functionalities is an intriguing approach to leveraging clean and sustainable energy technologies. The study elucidates the scaffold and encapsulation capabilities of deoxyribonucleic acid (DNA), demonstrating the influence of different DNA concentrations on the structural and electrochemical properties of Gd(OH)<sub>3</sub> nanorods. As evidence of concept application, the optimal Gd(OH)<sub>3</sub>-DNA-60 electrode delivers a specific capacity of 346 C g<sup>−1</sup> (576.6 F g<sup>−1</sup>) at 1 A g<sup>−1</sup> and a high rate capability. Interestingly, it provides superior cyclic stability with 98% initial capacity retention after 5000 charge/discharge cycles at 20 A g<sup>−1</sup>. The Gd(OH)<sub>3</sub>-DNA-60//activated carbon (AC) asymmetric device delivers the specific capacity of 151 C g<sup>−1</sup> (107.8 F g<sup>−1</sup>) at 1 A g<sup>−1</sup> with a cell voltage of 1.4 V. It provides the energy and power densities of 29.3 and 799.6 W kg<sup>−1</sup>, respectively, and withstands 95% of initial capacity after 10,000 cycles at 10 A g<sup>−1</sup>. In OER analysis, increasing DNA concentration lowers overpotential, Tafel slope, and resistance while enhancing ECSA characteristics. After the stability studies, the physicochemical experiments confirmed the structural stability of the composite material. The results indicate that the proposed approach is a significant method to tune structures and improve the electrochemical properties of nanomaterials for future energy storage and conversion applications.</p>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42114-024-00881-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42114-024-00881-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

制造具有多种功能的先进纳米材料是利用清洁和可持续能源技术的一种有趣方法。该研究阐明了脱氧核糖核酸(DNA)的支架和封装能力,证明了不同浓度的 DNA 对 Gd(OH)3 纳米棒的结构和电化学特性的影响。作为概念应用的证明,最佳的 Gd(OH)3-DNA-60 电极在 1 A g-1 的条件下可产生 346 C g-1 (576.6 F g-1)的比容量和较高的速率能力。有趣的是,它还具有优异的循环稳定性,在 20 A g-1 条件下进行 5000 次充放电循环后,初始容量保持率为 98%。Gd(OH)3-DNA-60//activated carbon (AC) 不对称器件在电池电压为 1.4 V、电流为 1 A g-1 时的比容量为 151 C g-1(107.8 F g-1),能量密度和功率密度分别为 29.3 W kg-1 和 799.6 W kg-1,在电流为 10 A g-1 时循环 10,000 次后初始容量保持率为 95%。在 OER 分析中,DNA 浓度的增加降低了过电位、Tafel 斜坡和电阻,同时增强了 ECSA 特性。在稳定性研究之后,理化实验证实了复合材料的结构稳定性。结果表明,所提出的方法是调整纳米材料结构和改善其电化学性质的重要方法,可用于未来的能量存储和转换应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deoxyribonucleic acid scaffolded and encapsulated one-dimensional gadolinium(III) hydroxide nanorods for supercapacitors and oxygen evaluation reaction properties

Deoxyribonucleic acid scaffolded and encapsulated one-dimensional gadolinium(III) hydroxide nanorods for supercapacitors and oxygen evaluation reaction properties

Fabricating advanced nanomaterials with multiple functionalities is an intriguing approach to leveraging clean and sustainable energy technologies. The study elucidates the scaffold and encapsulation capabilities of deoxyribonucleic acid (DNA), demonstrating the influence of different DNA concentrations on the structural and electrochemical properties of Gd(OH)3 nanorods. As evidence of concept application, the optimal Gd(OH)3-DNA-60 electrode delivers a specific capacity of 346 C g−1 (576.6 F g−1) at 1 A g−1 and a high rate capability. Interestingly, it provides superior cyclic stability with 98% initial capacity retention after 5000 charge/discharge cycles at 20 A g−1. The Gd(OH)3-DNA-60//activated carbon (AC) asymmetric device delivers the specific capacity of 151 C g−1 (107.8 F g−1) at 1 A g−1 with a cell voltage of 1.4 V. It provides the energy and power densities of 29.3 and 799.6 W kg−1, respectively, and withstands 95% of initial capacity after 10,000 cycles at 10 A g−1. In OER analysis, increasing DNA concentration lowers overpotential, Tafel slope, and resistance while enhancing ECSA characteristics. After the stability studies, the physicochemical experiments confirmed the structural stability of the composite material. The results indicate that the proposed approach is a significant method to tune structures and improve the electrochemical properties of nanomaterials for future energy storage and conversion applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信