Xiaofan Lv, Na Zhao, Shuang Long, Guojian Wang, Xinze Ran, Jining Gao, Junping Wang, Tao Wang
{"title":"三维皮肤生物打印是治疗辐射相关皮肤损伤的有效方法","authors":"Xiaofan Lv, Na Zhao, Shuang Long, Guojian Wang, Xinze Ran, Jining Gao, Junping Wang, Tao Wang","doi":"10.1111/wrr.13181","DOIUrl":null,"url":null,"abstract":"Both cutaneous radiation injury and radiation combined injury (RCI) could have serious skin traumas, which are collectively referred to as radiation‐associated skin injuries in this paper. These two types of skin injuries require special managements of wounds, and the therapeutic effects still need to be further improved. Cutaneous radiation injuries are common in both radiotherapy patients and victims of radioactive source accidents, which could lead to skin necrosis and ulcers in serious conditions. At present, there are still many challenges in management of cutaneous radiation injuries including early diagnosis, lesion assessment, and treatment prognosis. Radiation combined injuries are special and important issues in severe nuclear accidents, which often accompanied by serious skin traumas. Mass victims of RCI would be the focus of public health concern. Three‐dimensional (3D) bioprinting, as a versatile and favourable technique, offers effective approaches to fabricate biomimetic architectures with bioactivity, which provides potentials for resolve the challenges in treating radiation‐associated skin injuries. Combining with the cutting‐edge advances in 3D skin bioprinting, the authors analyse the damage characteristics of skin wounds in both cutaneous radiation injury and RCI and look forward to the potential value of 3D skin bioprinting for the treatments of radiation‐associated skin injuries.","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":"8 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D skin bioprinting as promising therapeutic strategy for radiation‐associated skin injuries\",\"authors\":\"Xiaofan Lv, Na Zhao, Shuang Long, Guojian Wang, Xinze Ran, Jining Gao, Junping Wang, Tao Wang\",\"doi\":\"10.1111/wrr.13181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Both cutaneous radiation injury and radiation combined injury (RCI) could have serious skin traumas, which are collectively referred to as radiation‐associated skin injuries in this paper. These two types of skin injuries require special managements of wounds, and the therapeutic effects still need to be further improved. Cutaneous radiation injuries are common in both radiotherapy patients and victims of radioactive source accidents, which could lead to skin necrosis and ulcers in serious conditions. At present, there are still many challenges in management of cutaneous radiation injuries including early diagnosis, lesion assessment, and treatment prognosis. Radiation combined injuries are special and important issues in severe nuclear accidents, which often accompanied by serious skin traumas. Mass victims of RCI would be the focus of public health concern. Three‐dimensional (3D) bioprinting, as a versatile and favourable technique, offers effective approaches to fabricate biomimetic architectures with bioactivity, which provides potentials for resolve the challenges in treating radiation‐associated skin injuries. Combining with the cutting‐edge advances in 3D skin bioprinting, the authors analyse the damage characteristics of skin wounds in both cutaneous radiation injury and RCI and look forward to the potential value of 3D skin bioprinting for the treatments of radiation‐associated skin injuries.\",\"PeriodicalId\":23864,\"journal\":{\"name\":\"Wound Repair and Regeneration\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wound Repair and Regeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/wrr.13181\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wound Repair and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/wrr.13181","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
3D skin bioprinting as promising therapeutic strategy for radiation‐associated skin injuries
Both cutaneous radiation injury and radiation combined injury (RCI) could have serious skin traumas, which are collectively referred to as radiation‐associated skin injuries in this paper. These two types of skin injuries require special managements of wounds, and the therapeutic effects still need to be further improved. Cutaneous radiation injuries are common in both radiotherapy patients and victims of radioactive source accidents, which could lead to skin necrosis and ulcers in serious conditions. At present, there are still many challenges in management of cutaneous radiation injuries including early diagnosis, lesion assessment, and treatment prognosis. Radiation combined injuries are special and important issues in severe nuclear accidents, which often accompanied by serious skin traumas. Mass victims of RCI would be the focus of public health concern. Three‐dimensional (3D) bioprinting, as a versatile and favourable technique, offers effective approaches to fabricate biomimetic architectures with bioactivity, which provides potentials for resolve the challenges in treating radiation‐associated skin injuries. Combining with the cutting‐edge advances in 3D skin bioprinting, the authors analyse the damage characteristics of skin wounds in both cutaneous radiation injury and RCI and look forward to the potential value of 3D skin bioprinting for the treatments of radiation‐associated skin injuries.
期刊介绍:
Wound Repair and Regeneration provides extensive international coverage of cellular and molecular biology, connective tissue, and biological mediator studies in the field of tissue repair and regeneration and serves a diverse audience of surgeons, plastic surgeons, dermatologists, biochemists, cell biologists, and others.
Wound Repair and Regeneration is the official journal of The Wound Healing Society, The European Tissue Repair Society, The Japanese Society for Wound Healing, and The Australian Wound Management Association.