Nicolás Morales-Durán, Jingtian Shi, A. H. MacDonald
{"title":"摩尔纹材料中的分化电子","authors":"Nicolás Morales-Durán, Jingtian Shi, A. H. MacDonald","doi":"10.1038/s42254-024-00718-z","DOIUrl":null,"url":null,"abstract":"In the 1980s, the discovery of electron states that fractionalize in the presence of a time-reversal symmetry breaking magnetic field opened up new directions in condensed matter physics. In 2023, evidence has accumulated that a version of these states in which the time-reversal symmetry breaking is spontaneous appears in moiré materials.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 6","pages":"349-351"},"PeriodicalIF":44.8000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractionalized electrons in moiré materials\",\"authors\":\"Nicolás Morales-Durán, Jingtian Shi, A. H. MacDonald\",\"doi\":\"10.1038/s42254-024-00718-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the 1980s, the discovery of electron states that fractionalize in the presence of a time-reversal symmetry breaking magnetic field opened up new directions in condensed matter physics. In 2023, evidence has accumulated that a version of these states in which the time-reversal symmetry breaking is spontaneous appears in moiré materials.\",\"PeriodicalId\":19024,\"journal\":{\"name\":\"Nature Reviews Physics\",\"volume\":\"6 6\",\"pages\":\"349-351\"},\"PeriodicalIF\":44.8000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42254-024-00718-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-024-00718-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
In the 1980s, the discovery of electron states that fractionalize in the presence of a time-reversal symmetry breaking magnetic field opened up new directions in condensed matter physics. In 2023, evidence has accumulated that a version of these states in which the time-reversal symmetry breaking is spontaneous appears in moiré materials.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.