{"title":"利用代谢编码评估南极洲西北部和南设得兰群岛夏季采样的雪中真菌多样性","authors":"","doi":"10.1007/s00792-024-01338-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We assessed the fungal diversity present in snow sampled during summer in the north-west Antarctic Peninsula and the South Shetland Islands, maritime Antarctica using a metabarcoding approach. A total of 586,693 fungal DNA reads were obtained and assigned to 203 amplicon sequence variants (ASVs). The dominant phylum was <em>Ascomycota</em>, followed by <em>Basidiomycota</em>, <em>Mortierellomycota</em>, <em>Chytridiomycota</em> and <em>Mucoromycota</em>. <em>Penicillium</em> sp., <em>Pseudogymnoascus pannorum</em>, <em>Coniochaeta</em> sp., <em>Aspergillus</em> sp., <em>Antarctomyces</em> sp., <em>Phenoliferia</em> sp., <em>Cryolevonia</em> sp., <em>Camptobasidiaceae</em> sp., <em>Rhodotorula mucilaginosa</em> and <em>Bannozyma yamatoana</em> were assessed as abundant taxa. The snow fungal diversity indices were high but varied across the different locations sampled. Of the fungal ASVs detected, only 28 were present all sampling locations. The 116 fungal genera detected in the snow were dominated by saprotrophic taxa, followed by symbiotrophic and pathotrophic. Our data indicate that, despite the low temperature and oligotrophic conditions, snow can host a richer mycobiome than previously reported through traditional culturing studies. The snow mycobiome includes a complex diversity dominated by cosmopolitan, cold-adapted, psychrophilic and endemic taxa. While saprophytes dominate this community, a range of other functional groups are present.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"14 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fungal diversity present in snow sampled in summer in the north-west Antarctic Peninsula and the South Shetland Islands, Maritime Antarctica, assessed using metabarcoding\",\"authors\":\"\",\"doi\":\"10.1007/s00792-024-01338-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We assessed the fungal diversity present in snow sampled during summer in the north-west Antarctic Peninsula and the South Shetland Islands, maritime Antarctica using a metabarcoding approach. A total of 586,693 fungal DNA reads were obtained and assigned to 203 amplicon sequence variants (ASVs). The dominant phylum was <em>Ascomycota</em>, followed by <em>Basidiomycota</em>, <em>Mortierellomycota</em>, <em>Chytridiomycota</em> and <em>Mucoromycota</em>. <em>Penicillium</em> sp., <em>Pseudogymnoascus pannorum</em>, <em>Coniochaeta</em> sp., <em>Aspergillus</em> sp., <em>Antarctomyces</em> sp., <em>Phenoliferia</em> sp., <em>Cryolevonia</em> sp., <em>Camptobasidiaceae</em> sp., <em>Rhodotorula mucilaginosa</em> and <em>Bannozyma yamatoana</em> were assessed as abundant taxa. The snow fungal diversity indices were high but varied across the different locations sampled. Of the fungal ASVs detected, only 28 were present all sampling locations. The 116 fungal genera detected in the snow were dominated by saprotrophic taxa, followed by symbiotrophic and pathotrophic. Our data indicate that, despite the low temperature and oligotrophic conditions, snow can host a richer mycobiome than previously reported through traditional culturing studies. The snow mycobiome includes a complex diversity dominated by cosmopolitan, cold-adapted, psychrophilic and endemic taxa. While saprophytes dominate this community, a range of other functional groups are present.</p>\",\"PeriodicalId\":12302,\"journal\":{\"name\":\"Extremophiles\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extremophiles\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00792-024-01338-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremophiles","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-024-01338-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Fungal diversity present in snow sampled in summer in the north-west Antarctic Peninsula and the South Shetland Islands, Maritime Antarctica, assessed using metabarcoding
Abstract
We assessed the fungal diversity present in snow sampled during summer in the north-west Antarctic Peninsula and the South Shetland Islands, maritime Antarctica using a metabarcoding approach. A total of 586,693 fungal DNA reads were obtained and assigned to 203 amplicon sequence variants (ASVs). The dominant phylum was Ascomycota, followed by Basidiomycota, Mortierellomycota, Chytridiomycota and Mucoromycota. Penicillium sp., Pseudogymnoascus pannorum, Coniochaeta sp., Aspergillus sp., Antarctomyces sp., Phenoliferia sp., Cryolevonia sp., Camptobasidiaceae sp., Rhodotorula mucilaginosa and Bannozyma yamatoana were assessed as abundant taxa. The snow fungal diversity indices were high but varied across the different locations sampled. Of the fungal ASVs detected, only 28 were present all sampling locations. The 116 fungal genera detected in the snow were dominated by saprotrophic taxa, followed by symbiotrophic and pathotrophic. Our data indicate that, despite the low temperature and oligotrophic conditions, snow can host a richer mycobiome than previously reported through traditional culturing studies. The snow mycobiome includes a complex diversity dominated by cosmopolitan, cold-adapted, psychrophilic and endemic taxa. While saprophytes dominate this community, a range of other functional groups are present.
期刊介绍:
Extremophiles features original research articles, reviews, and method papers on the biology, molecular biology, structure, function, and applications of microbial life at high or low temperature, pressure, acidity, alkalinity, salinity, or desiccation; or in the presence of organic solvents, heavy metals, normally toxic substances, or radiation.