Duje Smirčić, Matija Vukovski, Damir Slovenec, Duje Kukoč, Branimir Šegvić, Marija Horvat, Mirko Belak, Tonći Grgasović, Luka Badurina
{"title":"伊万希察山(克罗地亚西北部)中三叠纪火山碎屑沉积物的面貌结构、地球化学和岩石成因:阿尔卑斯-第纳尔过渡带双峰火山活动的证据","authors":"Duje Smirčić, Matija Vukovski, Damir Slovenec, Duje Kukoč, Branimir Šegvić, Marija Horvat, Mirko Belak, Tonći Grgasović, Luka Badurina","doi":"10.1186/s00015-024-00453-8","DOIUrl":null,"url":null,"abstract":"During the Middle Triassic, intensive volcanic activity took place along the eastern margin of Pangea, including the Greater Adria promontory, due to the Neotethyan oceanization. This resulted in the formation of various volcanic and volcaniclastic rock types. The region of NW Croatia, acting as a transition zone between the Southern Alps and the Dinarides, showcases the outcrops of these rocks. The present study investigates the facies of volcaniclastic rocks, the distribution of those facies, formation processes, as well as the genesis of the primary magma to gain a better understanding of the complex geodynamics of this region during the Middle Triassic. Six profiles across the Vudelja quarry front were surveyed using drone imaging and samples were collected for detailed petrographic and geochemical analyses. Two groups of volcaniclastic rocks were identified—mafic and intermediate/felsic. The former is represented by (I) autoclastic effusive facies and (II) resedimented autoclastic facies, while the latter is represented by (III) secondary pyroclastic facies. Mafic volcaniclastics were generated through basaltic effusions in marine environments, fragmentation in contact with seawater, mixing with shallow marine carbonate clasts, and subsequent redeposition in deeper marine areas. The secondary pyroclastic facies (III) consists of a regionally distributed felsic Pietra Verde tuff whose deposits may be related to pyroclastic density currents and syn-eruptive resedimentation by turbidite-like currents. Geochemical data indicate that parental magmas responsible for generating the mafic volcaniclastics had a calc-alkaline composition and originated in ensialic and mature arc settings of an active continental margin. The observed chemical composition is likely inherited from older, arc-related lithologies, associated with the subduction of the Paleotethys Ocean. Parental magmas are thought to have formed during continental rifting of the passive Middle Triassic margins of the Greater Adria through (i) partial melting of the heterogeneous lithospheric mantle, which had been metasomatized during an earlier Hercynian subduction, and (ii) subordinate processes related to the melting of the upper continental crust and subsequent fractionation. Ar/Ar dating on plagioclase separates yielded an age of 244.5 ± 2.8 Ma for mafic volcaniclastics. This aligns well with biostratigraphic ages of felsic tuffs which crop out on a broader regional scale of the Dinarides, the Southern Alps, and the Transdanubian Range. The overlapping ages obtained from radiometric dating of mafic volcaniclastics and biostratigraphic ages of the felsic Pietra Verde tuffs strongly suggest that the Greater Adria region experienced concurrent bimodal volcanism during the Middle Triassic.","PeriodicalId":49456,"journal":{"name":"Swiss Journal of Geosciences","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facies architecture, geochemistry and petrogenesis of Middle Triassic volcaniclastic deposits of Mt. Ivanščica (NW Croatia): evidence of bimodal volcanism in the Alpine-Dinaridic transitional zone\",\"authors\":\"Duje Smirčić, Matija Vukovski, Damir Slovenec, Duje Kukoč, Branimir Šegvić, Marija Horvat, Mirko Belak, Tonći Grgasović, Luka Badurina\",\"doi\":\"10.1186/s00015-024-00453-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the Middle Triassic, intensive volcanic activity took place along the eastern margin of Pangea, including the Greater Adria promontory, due to the Neotethyan oceanization. This resulted in the formation of various volcanic and volcaniclastic rock types. The region of NW Croatia, acting as a transition zone between the Southern Alps and the Dinarides, showcases the outcrops of these rocks. The present study investigates the facies of volcaniclastic rocks, the distribution of those facies, formation processes, as well as the genesis of the primary magma to gain a better understanding of the complex geodynamics of this region during the Middle Triassic. Six profiles across the Vudelja quarry front were surveyed using drone imaging and samples were collected for detailed petrographic and geochemical analyses. Two groups of volcaniclastic rocks were identified—mafic and intermediate/felsic. The former is represented by (I) autoclastic effusive facies and (II) resedimented autoclastic facies, while the latter is represented by (III) secondary pyroclastic facies. Mafic volcaniclastics were generated through basaltic effusions in marine environments, fragmentation in contact with seawater, mixing with shallow marine carbonate clasts, and subsequent redeposition in deeper marine areas. The secondary pyroclastic facies (III) consists of a regionally distributed felsic Pietra Verde tuff whose deposits may be related to pyroclastic density currents and syn-eruptive resedimentation by turbidite-like currents. Geochemical data indicate that parental magmas responsible for generating the mafic volcaniclastics had a calc-alkaline composition and originated in ensialic and mature arc settings of an active continental margin. The observed chemical composition is likely inherited from older, arc-related lithologies, associated with the subduction of the Paleotethys Ocean. Parental magmas are thought to have formed during continental rifting of the passive Middle Triassic margins of the Greater Adria through (i) partial melting of the heterogeneous lithospheric mantle, which had been metasomatized during an earlier Hercynian subduction, and (ii) subordinate processes related to the melting of the upper continental crust and subsequent fractionation. Ar/Ar dating on plagioclase separates yielded an age of 244.5 ± 2.8 Ma for mafic volcaniclastics. This aligns well with biostratigraphic ages of felsic tuffs which crop out on a broader regional scale of the Dinarides, the Southern Alps, and the Transdanubian Range. The overlapping ages obtained from radiometric dating of mafic volcaniclastics and biostratigraphic ages of the felsic Pietra Verde tuffs strongly suggest that the Greater Adria region experienced concurrent bimodal volcanism during the Middle Triassic.\",\"PeriodicalId\":49456,\"journal\":{\"name\":\"Swiss Journal of Geosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swiss Journal of Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1186/s00015-024-00453-8\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swiss Journal of Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s00015-024-00453-8","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Facies architecture, geochemistry and petrogenesis of Middle Triassic volcaniclastic deposits of Mt. Ivanščica (NW Croatia): evidence of bimodal volcanism in the Alpine-Dinaridic transitional zone
During the Middle Triassic, intensive volcanic activity took place along the eastern margin of Pangea, including the Greater Adria promontory, due to the Neotethyan oceanization. This resulted in the formation of various volcanic and volcaniclastic rock types. The region of NW Croatia, acting as a transition zone between the Southern Alps and the Dinarides, showcases the outcrops of these rocks. The present study investigates the facies of volcaniclastic rocks, the distribution of those facies, formation processes, as well as the genesis of the primary magma to gain a better understanding of the complex geodynamics of this region during the Middle Triassic. Six profiles across the Vudelja quarry front were surveyed using drone imaging and samples were collected for detailed petrographic and geochemical analyses. Two groups of volcaniclastic rocks were identified—mafic and intermediate/felsic. The former is represented by (I) autoclastic effusive facies and (II) resedimented autoclastic facies, while the latter is represented by (III) secondary pyroclastic facies. Mafic volcaniclastics were generated through basaltic effusions in marine environments, fragmentation in contact with seawater, mixing with shallow marine carbonate clasts, and subsequent redeposition in deeper marine areas. The secondary pyroclastic facies (III) consists of a regionally distributed felsic Pietra Verde tuff whose deposits may be related to pyroclastic density currents and syn-eruptive resedimentation by turbidite-like currents. Geochemical data indicate that parental magmas responsible for generating the mafic volcaniclastics had a calc-alkaline composition and originated in ensialic and mature arc settings of an active continental margin. The observed chemical composition is likely inherited from older, arc-related lithologies, associated with the subduction of the Paleotethys Ocean. Parental magmas are thought to have formed during continental rifting of the passive Middle Triassic margins of the Greater Adria through (i) partial melting of the heterogeneous lithospheric mantle, which had been metasomatized during an earlier Hercynian subduction, and (ii) subordinate processes related to the melting of the upper continental crust and subsequent fractionation. Ar/Ar dating on plagioclase separates yielded an age of 244.5 ± 2.8 Ma for mafic volcaniclastics. This aligns well with biostratigraphic ages of felsic tuffs which crop out on a broader regional scale of the Dinarides, the Southern Alps, and the Transdanubian Range. The overlapping ages obtained from radiometric dating of mafic volcaniclastics and biostratigraphic ages of the felsic Pietra Verde tuffs strongly suggest that the Greater Adria region experienced concurrent bimodal volcanism during the Middle Triassic.
期刊介绍:
The Swiss Journal of Geosciences publishes original research and review articles, with a particular focus on the evolution of the Tethys realm and the Alpine/Himalayan orogen. By consolidating the former Eclogae Geologicae Helvetiae and Swiss Bulletin of Mineralogy and Petrology, this international journal covers all disciplines of the solid Earth Sciences, including their practical applications.
The journal gives preference to articles that are of wide interest to the international research community, while at the same time recognising the importance of documenting high-quality geoscientific data in a regional context, including the occasional publication of maps.