{"title":"实用低温汽油燃烧技术,用于高效率的非公路、中型和重型发动机","authors":"John E Dec, Dario Lopez Pintor, Ram Vijayagopal","doi":"10.1177/14680874241244550","DOIUrl":null,"url":null,"abstract":"Low-temperature gasoline combustion (LTGC) with additive-mixing fuel injection (AMFI) is a new combustion strategy that has been demonstrated to deliver 9%–25% better brake thermal efficiency than similar-sized market-leading diesel engines over the operating map. Moreover, the LTGC-AMFI engine shows near-zero smoke, and NOx emissions are 4–100 times lower than those of a diesel, sufficiently low that no aftertreatment, or only passive NOx aftertreatment, would be sufficient (diesel exhaust fluid is not required). LTGC-AMFI combustion is based on kinetically controlled compression ignition of a dilute charge with a variable amount of low-to-moderate fuel stratification. Fast combustion control is provided by adding minute amounts of an ignition-enhancing additive into the fuel each engine cycle to control its reactivity. This strategy was used to operate a medium-duty (MD) LTGC-AMFI engine at loads from idle to 16.3 bar BMEP and speeds from 600 to 2400 rpm with regular E10 gasoline, which covers nearly the entire operating map of a typical MD engine. Turbine-out temperatures were sufficient for an oxidation catalyst to control hydrocarbon and CO emissions. Autonomie simulations over the GEM ARB Transient and the GEM 55 mph Cruise driving cycles for class-6 trucks using this technology showed fuel economies of 8.1 and 11.4 mpg-gasoline-equivalent, respectively, corresponding to 18.6% and 13.4% improvements over a similar-size diesel engine. Engine-out NOx emissions were 0.024 and 0.01 g/bhp-h, respectively, well below current U.S. emission standards. These results show that switching from diesel to LTGC-AMFI engines would greatly reduce greenhouse gas (GHG) emissions for off-road, MD and HD applications, which will continue to rely on combustion engines because electrification is not practical in the foreseeable future. With their reduced fuel consumption, the lower cost of gasoline compared to diesel fuel, and much lower aftertreatment costs, LTGC-AMFI engines also offer a significantly lower total cost of ownership.","PeriodicalId":14034,"journal":{"name":"International Journal of Engine Research","volume":"121 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical low-temperature gasoline combustion for very high efficiency off-road, medium- and heavy-duty engines\",\"authors\":\"John E Dec, Dario Lopez Pintor, Ram Vijayagopal\",\"doi\":\"10.1177/14680874241244550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-temperature gasoline combustion (LTGC) with additive-mixing fuel injection (AMFI) is a new combustion strategy that has been demonstrated to deliver 9%–25% better brake thermal efficiency than similar-sized market-leading diesel engines over the operating map. Moreover, the LTGC-AMFI engine shows near-zero smoke, and NOx emissions are 4–100 times lower than those of a diesel, sufficiently low that no aftertreatment, or only passive NOx aftertreatment, would be sufficient (diesel exhaust fluid is not required). LTGC-AMFI combustion is based on kinetically controlled compression ignition of a dilute charge with a variable amount of low-to-moderate fuel stratification. Fast combustion control is provided by adding minute amounts of an ignition-enhancing additive into the fuel each engine cycle to control its reactivity. This strategy was used to operate a medium-duty (MD) LTGC-AMFI engine at loads from idle to 16.3 bar BMEP and speeds from 600 to 2400 rpm with regular E10 gasoline, which covers nearly the entire operating map of a typical MD engine. Turbine-out temperatures were sufficient for an oxidation catalyst to control hydrocarbon and CO emissions. Autonomie simulations over the GEM ARB Transient and the GEM 55 mph Cruise driving cycles for class-6 trucks using this technology showed fuel economies of 8.1 and 11.4 mpg-gasoline-equivalent, respectively, corresponding to 18.6% and 13.4% improvements over a similar-size diesel engine. Engine-out NOx emissions were 0.024 and 0.01 g/bhp-h, respectively, well below current U.S. emission standards. These results show that switching from diesel to LTGC-AMFI engines would greatly reduce greenhouse gas (GHG) emissions for off-road, MD and HD applications, which will continue to rely on combustion engines because electrification is not practical in the foreseeable future. With their reduced fuel consumption, the lower cost of gasoline compared to diesel fuel, and much lower aftertreatment costs, LTGC-AMFI engines also offer a significantly lower total cost of ownership.\",\"PeriodicalId\":14034,\"journal\":{\"name\":\"International Journal of Engine Research\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engine Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14680874241244550\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engine Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14680874241244550","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Practical low-temperature gasoline combustion for very high efficiency off-road, medium- and heavy-duty engines
Low-temperature gasoline combustion (LTGC) with additive-mixing fuel injection (AMFI) is a new combustion strategy that has been demonstrated to deliver 9%–25% better brake thermal efficiency than similar-sized market-leading diesel engines over the operating map. Moreover, the LTGC-AMFI engine shows near-zero smoke, and NOx emissions are 4–100 times lower than those of a diesel, sufficiently low that no aftertreatment, or only passive NOx aftertreatment, would be sufficient (diesel exhaust fluid is not required). LTGC-AMFI combustion is based on kinetically controlled compression ignition of a dilute charge with a variable amount of low-to-moderate fuel stratification. Fast combustion control is provided by adding minute amounts of an ignition-enhancing additive into the fuel each engine cycle to control its reactivity. This strategy was used to operate a medium-duty (MD) LTGC-AMFI engine at loads from idle to 16.3 bar BMEP and speeds from 600 to 2400 rpm with regular E10 gasoline, which covers nearly the entire operating map of a typical MD engine. Turbine-out temperatures were sufficient for an oxidation catalyst to control hydrocarbon and CO emissions. Autonomie simulations over the GEM ARB Transient and the GEM 55 mph Cruise driving cycles for class-6 trucks using this technology showed fuel economies of 8.1 and 11.4 mpg-gasoline-equivalent, respectively, corresponding to 18.6% and 13.4% improvements over a similar-size diesel engine. Engine-out NOx emissions were 0.024 and 0.01 g/bhp-h, respectively, well below current U.S. emission standards. These results show that switching from diesel to LTGC-AMFI engines would greatly reduce greenhouse gas (GHG) emissions for off-road, MD and HD applications, which will continue to rely on combustion engines because electrification is not practical in the foreseeable future. With their reduced fuel consumption, the lower cost of gasoline compared to diesel fuel, and much lower aftertreatment costs, LTGC-AMFI engines also offer a significantly lower total cost of ownership.