水稻植株在 19 次产量试验中过表达 OsTZF5(编码 CCCH 串联锌指蛋白)的案例研究

IF 4.8 1区 农林科学 Q1 AGRONOMY
Rice Pub Date : 2024-04-09 DOI:10.1186/s12284-024-00705-z
Alexandre Grondin, Mignon A. Natividad, Takuya Ogata, Asad Jan, Amélie C. M. Gaudin, Kurniawan R. Trijatmiko, Evelyn Liwanag, Kyonoshin Maruyama, Yasunari Fujita, Kazuko Yamaguchi-Shinozaki, Kazuo Nakashima, Inez H. Slamet-Loedin, Amelia Henry
{"title":"水稻植株在 19 次产量试验中过表达 OsTZF5(编码 CCCH 串联锌指蛋白)的案例研究","authors":"Alexandre Grondin, Mignon A. Natividad, Takuya Ogata, Asad Jan, Amélie C. M. Gaudin, Kurniawan R. Trijatmiko, Evelyn Liwanag, Kyonoshin Maruyama, Yasunari Fujita, Kazuko Yamaguchi-Shinozaki, Kazuo Nakashima, Inez H. Slamet-Loedin, Amelia Henry","doi":"10.1186/s12284-024-00705-z","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Development of transgenic rice overexpressing transcription factors involved in drought response has been previously reported to confer drought tolerance and therefore represents a means of crop improvement. We transformed lowland rice IR64 with <i>OsTZF5</i>, encoding a CCCH-tandem zinc finger protein, under the control of the rice <i>LIP9</i> stress-inducible promoter and compared the drought response of transgenic lines and nulls to IR64 in successive screenhouse paddy and field trials up to the T<sub>6</sub> generation.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Compared to the well-watered conditions, the level of drought stress across experiments varied from a minimum of − 25 to − 75 kPa at a soil depth of 30 cm which reduced biomass by 30–55% and grain yield by 1–92%, presenting a range of drought severities. <i>OsTZF5</i> transgenic lines showed high yield advantage under drought over IR64 in early generations, which was related to shorter time to flowering, lower shoot biomass and higher harvest index. However, the increases in values for yield and related traits in the transgenics became smaller over successive generations despite continued detection of drought-induced transgene expression as conferred by the <i>LIP9</i> promoter. The decreased advantage of the transgenics over generations tended to coincide with increased levels of homozygosity. Background cleaning of the transgenic lines as well as introgression of the transgene into an IR64 line containing major-effect drought yield QTLs, which were evaluated starting at the BC<sub>3</sub>F<sub>1</sub> and BC<sub>2</sub>F<sub>3</sub> generation, respectively, did not result in consistently increased yield under drought as compared to the respective checks.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Although we cannot conclusively explain the genetic factors behind the loss of yield advantage of the transgenics under drought across generations, our results help in distinguishing among potential drought tolerance mechanisms related to effectiveness of the transgenics, since early flowering and harvest index most closely reflected the levels of yield advantage in the transgenics across generations while reduced biomass did not.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"21 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Case Study from the Overexpression of OsTZF5, Encoding a CCCH Tandem Zinc Finger Protein, in Rice Plants Across Nineteen Yield Trials\",\"authors\":\"Alexandre Grondin, Mignon A. Natividad, Takuya Ogata, Asad Jan, Amélie C. M. Gaudin, Kurniawan R. Trijatmiko, Evelyn Liwanag, Kyonoshin Maruyama, Yasunari Fujita, Kazuko Yamaguchi-Shinozaki, Kazuo Nakashima, Inez H. Slamet-Loedin, Amelia Henry\",\"doi\":\"10.1186/s12284-024-00705-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Background</h3><p>Development of transgenic rice overexpressing transcription factors involved in drought response has been previously reported to confer drought tolerance and therefore represents a means of crop improvement. We transformed lowland rice IR64 with <i>OsTZF5</i>, encoding a CCCH-tandem zinc finger protein, under the control of the rice <i>LIP9</i> stress-inducible promoter and compared the drought response of transgenic lines and nulls to IR64 in successive screenhouse paddy and field trials up to the T<sub>6</sub> generation.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>Compared to the well-watered conditions, the level of drought stress across experiments varied from a minimum of − 25 to − 75 kPa at a soil depth of 30 cm which reduced biomass by 30–55% and grain yield by 1–92%, presenting a range of drought severities. <i>OsTZF5</i> transgenic lines showed high yield advantage under drought over IR64 in early generations, which was related to shorter time to flowering, lower shoot biomass and higher harvest index. However, the increases in values for yield and related traits in the transgenics became smaller over successive generations despite continued detection of drought-induced transgene expression as conferred by the <i>LIP9</i> promoter. The decreased advantage of the transgenics over generations tended to coincide with increased levels of homozygosity. Background cleaning of the transgenic lines as well as introgression of the transgene into an IR64 line containing major-effect drought yield QTLs, which were evaluated starting at the BC<sub>3</sub>F<sub>1</sub> and BC<sub>2</sub>F<sub>3</sub> generation, respectively, did not result in consistently increased yield under drought as compared to the respective checks.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusions</h3><p>Although we cannot conclusively explain the genetic factors behind the loss of yield advantage of the transgenics under drought across generations, our results help in distinguishing among potential drought tolerance mechanisms related to effectiveness of the transgenics, since early flowering and harvest index most closely reflected the levels of yield advantage in the transgenics across generations while reduced biomass did not.</p>\",\"PeriodicalId\":21408,\"journal\":{\"name\":\"Rice\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12284-024-00705-z\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-024-00705-z","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

背景据报道,开发超表达参与干旱响应的转录因子的转基因水稻可赋予作物耐旱性,因此是改良作物的一种方法。我们用编码CCCH-串联锌指蛋白的OsTZF5在水稻LIP9胁迫诱导启动子的控制下转化了低地水稻IR64,并在连续的筛选水稻和田间试验中比较了转基因品系和无效品系对IR64的干旱响应,直至T6代。结果与水分充足的条件相比,在土壤深度为 30 cm 时,各试验的干旱胁迫水平从最低 - 25 kPa 到 - 75 kPa 不等,使生物量减少 30-55%,谷物产量减少 1-92%,呈现出不同的干旱严重程度。与 IR64 相比,OsTZF5 转基因品系在早期世代的干旱条件下表现出较高的产量优势,这与较短的开花时间、较低的芽生物量和较高的收获指数有关。然而,尽管继续检测到 LIP9 启动子赋予的干旱诱导转基因表达,但转基因产量和相关性状的增加值在连续几代中变得越来越小。转基因的优势随着世代的增加而减弱,这往往与同源性水平的增加相吻合。分别从 BC3F1 和 BC2F3 代开始对转基因品系进行背景清理,以及将转基因导入含有主要干旱产量 QTLs 的 IR64 品系进行评估,但与相应的对照相比,并没有持续增加干旱下的产量。结论虽然我们不能最终解释转基因在干旱条件下跨代丧失产量优势背后的遗传因素,但我们的结果有助于区分与转基因有效性有关的潜在耐旱机制,因为早花和收获指数最接近地反映了转基因跨代的产量优势水平,而生物量的减少则没有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Case Study from the Overexpression of OsTZF5, Encoding a CCCH Tandem Zinc Finger Protein, in Rice Plants Across Nineteen Yield Trials

A Case Study from the Overexpression of OsTZF5, Encoding a CCCH Tandem Zinc Finger Protein, in Rice Plants Across Nineteen Yield Trials

Background

Development of transgenic rice overexpressing transcription factors involved in drought response has been previously reported to confer drought tolerance and therefore represents a means of crop improvement. We transformed lowland rice IR64 with OsTZF5, encoding a CCCH-tandem zinc finger protein, under the control of the rice LIP9 stress-inducible promoter and compared the drought response of transgenic lines and nulls to IR64 in successive screenhouse paddy and field trials up to the T6 generation.

Results

Compared to the well-watered conditions, the level of drought stress across experiments varied from a minimum of − 25 to − 75 kPa at a soil depth of 30 cm which reduced biomass by 30–55% and grain yield by 1–92%, presenting a range of drought severities. OsTZF5 transgenic lines showed high yield advantage under drought over IR64 in early generations, which was related to shorter time to flowering, lower shoot biomass and higher harvest index. However, the increases in values for yield and related traits in the transgenics became smaller over successive generations despite continued detection of drought-induced transgene expression as conferred by the LIP9 promoter. The decreased advantage of the transgenics over generations tended to coincide with increased levels of homozygosity. Background cleaning of the transgenic lines as well as introgression of the transgene into an IR64 line containing major-effect drought yield QTLs, which were evaluated starting at the BC3F1 and BC2F3 generation, respectively, did not result in consistently increased yield under drought as compared to the respective checks.

Conclusions

Although we cannot conclusively explain the genetic factors behind the loss of yield advantage of the transgenics under drought across generations, our results help in distinguishing among potential drought tolerance mechanisms related to effectiveness of the transgenics, since early flowering and harvest index most closely reflected the levels of yield advantage in the transgenics across generations while reduced biomass did not.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rice
Rice AGRONOMY-
CiteScore
10.10
自引率
3.60%
发文量
60
审稿时长
>12 weeks
期刊介绍: Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信