Prakash Kumar, Gajanan Anne, M. R. Ramesh, Mrityunjay Doddamani, Ashwini Prabhu
{"title":"利用聚乳酸(PLA)涂层增强生物可降解镁锌锰合金的功能,用于临时植入物","authors":"Prakash Kumar, Gajanan Anne, M. R. Ramesh, Mrityunjay Doddamani, Ashwini Prabhu","doi":"10.1007/s11998-024-00913-8","DOIUrl":null,"url":null,"abstract":"<div><p>Polylactic acid (PLA) was coated on biodegradable Mg–Zn–Mn alloys using a sol–gel coating technique for temporary implant applications. The presence of smooth, dense, crack-free PLA coating was evidenced using Fourier transform infrared spectroscopy (FTIR) and a scanning electronic microscope (SEM) equipped with an energy-dispersive X-ray spectroscopy (EDX) module. The strength of the bond between PLA and the Mg–Zn–Mn alloys was investigated as per ASTM D3359 and found to be 4B. The degradation behavior was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy in a simulated body fluid (SBF) solution. The corrosion rate of the PLA–Mg–Zn–Mn sample was found to be 0.00363 mm/y, which is 73% better than the bare Mg–Zn–Mn sample (0.00493 mm/y). In addition, the results of the cytotoxicity assay indicated the cytocompatibility of the implant material on MG-63 osteoblast-like cells, confirming its safety on the bone cells. The efficacy of the use of PLA coating on the biodegradable Mg–Zn–Mn is due to the synergistic effect of both physical and chemical interactions between the PLA layer and the substrate.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 4","pages":"1525 - 1537"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the functionality of biodegradable Mg–Zn–Mn alloys using poly(lactic) acid (PLA) coating for temporary implants\",\"authors\":\"Prakash Kumar, Gajanan Anne, M. R. Ramesh, Mrityunjay Doddamani, Ashwini Prabhu\",\"doi\":\"10.1007/s11998-024-00913-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polylactic acid (PLA) was coated on biodegradable Mg–Zn–Mn alloys using a sol–gel coating technique for temporary implant applications. The presence of smooth, dense, crack-free PLA coating was evidenced using Fourier transform infrared spectroscopy (FTIR) and a scanning electronic microscope (SEM) equipped with an energy-dispersive X-ray spectroscopy (EDX) module. The strength of the bond between PLA and the Mg–Zn–Mn alloys was investigated as per ASTM D3359 and found to be 4B. The degradation behavior was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy in a simulated body fluid (SBF) solution. The corrosion rate of the PLA–Mg–Zn–Mn sample was found to be 0.00363 mm/y, which is 73% better than the bare Mg–Zn–Mn sample (0.00493 mm/y). In addition, the results of the cytotoxicity assay indicated the cytocompatibility of the implant material on MG-63 osteoblast-like cells, confirming its safety on the bone cells. The efficacy of the use of PLA coating on the biodegradable Mg–Zn–Mn is due to the synergistic effect of both physical and chemical interactions between the PLA layer and the substrate.</p></div>\",\"PeriodicalId\":619,\"journal\":{\"name\":\"Journal of Coatings Technology and Research\",\"volume\":\"21 4\",\"pages\":\"1525 - 1537\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Coatings Technology and Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11998-024-00913-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-024-00913-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Enhancing the functionality of biodegradable Mg–Zn–Mn alloys using poly(lactic) acid (PLA) coating for temporary implants
Polylactic acid (PLA) was coated on biodegradable Mg–Zn–Mn alloys using a sol–gel coating technique for temporary implant applications. The presence of smooth, dense, crack-free PLA coating was evidenced using Fourier transform infrared spectroscopy (FTIR) and a scanning electronic microscope (SEM) equipped with an energy-dispersive X-ray spectroscopy (EDX) module. The strength of the bond between PLA and the Mg–Zn–Mn alloys was investigated as per ASTM D3359 and found to be 4B. The degradation behavior was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy in a simulated body fluid (SBF) solution. The corrosion rate of the PLA–Mg–Zn–Mn sample was found to be 0.00363 mm/y, which is 73% better than the bare Mg–Zn–Mn sample (0.00493 mm/y). In addition, the results of the cytotoxicity assay indicated the cytocompatibility of the implant material on MG-63 osteoblast-like cells, confirming its safety on the bone cells. The efficacy of the use of PLA coating on the biodegradable Mg–Zn–Mn is due to the synergistic effect of both physical and chemical interactions between the PLA layer and the substrate.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.