Jan Beran, Jeremy Näscher, Fabian Pietsch, Stephan Walterspacher
{"title":"在循环长记忆下测试未知频率的周期性,并应用于呼吸肌训练","authors":"Jan Beran, Jeremy Näscher, Fabian Pietsch, Stephan Walterspacher","doi":"10.1007/s10182-024-00499-x","DOIUrl":null,"url":null,"abstract":"<p>A frequent problem in applied time series analysis is the identification of dominating periodic components. A particularly difficult task is to distinguish deterministic periodic signals from periodic long memory. In this paper, a family of test statistics based on Whittle’s Gaussian log-likelihood approximation is proposed. Asymptotic critical regions and bounds for the asymptotic power are derived. In cases where a deterministic periodic signal and periodic long memory share the same frequency, consistency and rates of type II error probabilities depend on the long-memory parameter. Simulations and an application to respiratory muscle training data illustrate the results.</p>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing for periodicity at an unknown frequency under cyclic long memory, with applications to respiratory muscle training\",\"authors\":\"Jan Beran, Jeremy Näscher, Fabian Pietsch, Stephan Walterspacher\",\"doi\":\"10.1007/s10182-024-00499-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A frequent problem in applied time series analysis is the identification of dominating periodic components. A particularly difficult task is to distinguish deterministic periodic signals from periodic long memory. In this paper, a family of test statistics based on Whittle’s Gaussian log-likelihood approximation is proposed. Asymptotic critical regions and bounds for the asymptotic power are derived. In cases where a deterministic periodic signal and periodic long memory share the same frequency, consistency and rates of type II error probabilities depend on the long-memory parameter. Simulations and an application to respiratory muscle training data illustrate the results.</p>\",\"PeriodicalId\":55446,\"journal\":{\"name\":\"Asta-Advances in Statistical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asta-Advances in Statistical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10182-024-00499-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10182-024-00499-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
在应用时间序列分析中,一个经常遇到的问题是如何识别占主导地位的周期成分。一个特别困难的任务是将确定性周期信号与周期性长记忆区分开来。本文提出了基于惠特尔高斯对数似然近似的检验统计量系列。推导出了渐近临界区和渐近功率的边界。在确定性周期信号和周期性长记忆共享相同频率的情况下,一致性和 II 型错误概率率取决于长记忆参数。模拟和呼吸肌训练数据的应用说明了这些结果。
Testing for periodicity at an unknown frequency under cyclic long memory, with applications to respiratory muscle training
A frequent problem in applied time series analysis is the identification of dominating periodic components. A particularly difficult task is to distinguish deterministic periodic signals from periodic long memory. In this paper, a family of test statistics based on Whittle’s Gaussian log-likelihood approximation is proposed. Asymptotic critical regions and bounds for the asymptotic power are derived. In cases where a deterministic periodic signal and periodic long memory share the same frequency, consistency and rates of type II error probabilities depend on the long-memory parameter. Simulations and an application to respiratory muscle training data illustrate the results.
期刊介绍:
AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.