在循环长记忆下测试未知频率的周期性,并应用于呼吸肌训练

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Jan Beran, Jeremy Näscher, Fabian Pietsch, Stephan Walterspacher
{"title":"在循环长记忆下测试未知频率的周期性,并应用于呼吸肌训练","authors":"Jan Beran, Jeremy Näscher, Fabian Pietsch, Stephan Walterspacher","doi":"10.1007/s10182-024-00499-x","DOIUrl":null,"url":null,"abstract":"<p>A frequent problem in applied time series analysis is the identification of dominating periodic components. A particularly difficult task is to distinguish deterministic periodic signals from periodic long memory. In this paper, a family of test statistics based on Whittle’s Gaussian log-likelihood approximation is proposed. Asymptotic critical regions and bounds for the asymptotic power are derived. In cases where a deterministic periodic signal and periodic long memory share the same frequency, consistency and rates of type II error probabilities depend on the long-memory parameter. Simulations and an application to respiratory muscle training data illustrate the results.</p>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing for periodicity at an unknown frequency under cyclic long memory, with applications to respiratory muscle training\",\"authors\":\"Jan Beran, Jeremy Näscher, Fabian Pietsch, Stephan Walterspacher\",\"doi\":\"10.1007/s10182-024-00499-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A frequent problem in applied time series analysis is the identification of dominating periodic components. A particularly difficult task is to distinguish deterministic periodic signals from periodic long memory. In this paper, a family of test statistics based on Whittle’s Gaussian log-likelihood approximation is proposed. Asymptotic critical regions and bounds for the asymptotic power are derived. In cases where a deterministic periodic signal and periodic long memory share the same frequency, consistency and rates of type II error probabilities depend on the long-memory parameter. Simulations and an application to respiratory muscle training data illustrate the results.</p>\",\"PeriodicalId\":55446,\"journal\":{\"name\":\"Asta-Advances in Statistical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asta-Advances in Statistical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10182-024-00499-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10182-024-00499-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在应用时间序列分析中,一个经常遇到的问题是如何识别占主导地位的周期成分。一个特别困难的任务是将确定性周期信号与周期性长记忆区分开来。本文提出了基于惠特尔高斯对数似然近似的检验统计量系列。推导出了渐近临界区和渐近功率的边界。在确定性周期信号和周期性长记忆共享相同频率的情况下,一致性和 II 型错误概率率取决于长记忆参数。模拟和呼吸肌训练数据的应用说明了这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Testing for periodicity at an unknown frequency under cyclic long memory, with applications to respiratory muscle training

Testing for periodicity at an unknown frequency under cyclic long memory, with applications to respiratory muscle training

A frequent problem in applied time series analysis is the identification of dominating periodic components. A particularly difficult task is to distinguish deterministic periodic signals from periodic long memory. In this paper, a family of test statistics based on Whittle’s Gaussian log-likelihood approximation is proposed. Asymptotic critical regions and bounds for the asymptotic power are derived. In cases where a deterministic periodic signal and periodic long memory share the same frequency, consistency and rates of type II error probabilities depend on the long-memory parameter. Simulations and an application to respiratory muscle training data illustrate the results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信