{"title":"对任意和高哈特曼数下的 MHD 管道流动问题进行无元素 Galerkin 分析","authors":"Xiaolin Li, Shuling Li","doi":"10.1007/s00366-024-01969-1","DOIUrl":null,"url":null,"abstract":"<p>A stabilized element-free Galerkin (EFG) method is proposed in this paper for numerical analysis of the generalized steady MHD duct flow problems at arbitrary and high Hartmann numbers up to <span>\\(10^{16}\\)</span>. Computational formulas of the EFG method for MHD duct flows are derived by using Nitsche’s technique to facilitate the implementation of Dirichlet boundary conditions. The reproducing kernel gradient smoothing integration technique is incorporated into the EFG method to accelerate the solution procedure impaired by Gauss quadrature rules. A stabilized Nitsche-type EFG weak formulation of MHD duct flows is devised to enhance the performance damaged by high Hartmann numbers. Several benchmark MHD duct flow problems are solved to testify the stability and the accuracy of the present EFG method. Numerical results show that the range of the Hartmann number <i>Ha</i> in the present EFG method is <span>\\(1\\le Ha\\le 10^{16}\\)</span>, which is much larger than that in existing numerical methods.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"52 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Element-free Galerkin analysis of MHD duct flow problems at arbitrary and high Hartmann numbers\",\"authors\":\"Xiaolin Li, Shuling Li\",\"doi\":\"10.1007/s00366-024-01969-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A stabilized element-free Galerkin (EFG) method is proposed in this paper for numerical analysis of the generalized steady MHD duct flow problems at arbitrary and high Hartmann numbers up to <span>\\\\(10^{16}\\\\)</span>. Computational formulas of the EFG method for MHD duct flows are derived by using Nitsche’s technique to facilitate the implementation of Dirichlet boundary conditions. The reproducing kernel gradient smoothing integration technique is incorporated into the EFG method to accelerate the solution procedure impaired by Gauss quadrature rules. A stabilized Nitsche-type EFG weak formulation of MHD duct flows is devised to enhance the performance damaged by high Hartmann numbers. Several benchmark MHD duct flow problems are solved to testify the stability and the accuracy of the present EFG method. Numerical results show that the range of the Hartmann number <i>Ha</i> in the present EFG method is <span>\\\\(1\\\\le Ha\\\\le 10^{16}\\\\)</span>, which is much larger than that in existing numerical methods.</p>\",\"PeriodicalId\":11696,\"journal\":{\"name\":\"Engineering with Computers\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering with Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00366-024-01969-1\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-01969-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Element-free Galerkin analysis of MHD duct flow problems at arbitrary and high Hartmann numbers
A stabilized element-free Galerkin (EFG) method is proposed in this paper for numerical analysis of the generalized steady MHD duct flow problems at arbitrary and high Hartmann numbers up to \(10^{16}\). Computational formulas of the EFG method for MHD duct flows are derived by using Nitsche’s technique to facilitate the implementation of Dirichlet boundary conditions. The reproducing kernel gradient smoothing integration technique is incorporated into the EFG method to accelerate the solution procedure impaired by Gauss quadrature rules. A stabilized Nitsche-type EFG weak formulation of MHD duct flows is devised to enhance the performance damaged by high Hartmann numbers. Several benchmark MHD duct flow problems are solved to testify the stability and the accuracy of the present EFG method. Numerical results show that the range of the Hartmann number Ha in the present EFG method is \(1\le Ha\le 10^{16}\), which is much larger than that in existing numerical methods.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.