{"title":"快速生长种植园的最佳轮作年龄:一个动态优化问题","authors":"","doi":"10.1007/s11538-024-01262-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Forest plantations are economically and environmentally relevant, as they play a key role in timber production and carbon capture. It is expected that the future climate change scenario affects forest growth and modify the rotation age for timber production. However, mathematical models on the effect of climate change on the rotation age for timber production remain still limited. We aim to determine the optimal rotation age that maximizes the net economic benefit of timber volume in a negative scenario from the climatic point of view. For this purpose, a bioeconomic optimal control problem was formulated from a system of Ordinary Differential Equations (ODEs) governed by the state variables live biomass volume, intrinsic growth rate, and area affected by fire. Then, four control variables were associated to the system, representing forest management activities, which are felling, thinning, reforestation, and fire prevention. The existence of optimal control solutions was demonstrated, and the solutions of the optimal control problem were also characterized using Pontryagin’s Maximum Principle. The solutions of the model were approximated numerically by the Forward–Backward Sweep method. To validate the model, two scenarios were considered: a realistic scenario that represents current forestry activities for the exotic species <em>Pinus radiata</em> D. Don, and a pessimistic scenario, which considers environmental conditions conducive to a higher occurrence of forest fires. The optimal solution that maximizes the net benefit of timber volume consists of a strategy that considers all four control variables simultaneously. For felling and thinning, regardless of the scenario considered, the optimal strategy is to spend on both activities depending on the amount of biomass in the field. Similarly, for reforestation, the optimal strategy is to spend as the forest is harvested. In the case of fire prevention, in the realistic scenario, the optimal strategy consists of reducing the expenses in fire prevention because the incidence of fires is lower, whereas in the pessimistic scenario, the opposite is true. It is concluded that the optimal rotation age that maximizes the net economic benefit of timber volume in <em>P. radiata</em> plantations is 24 and 19 years for the realistic and pessimistic scenarios, respectively. This corroborates that the presence of fires influences the determination of the optimal rotation age, and as a consequence, the net economic benefit.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Rotation Age in Fast Growing Plantations: A Dynamical Optimization Problem\",\"authors\":\"\",\"doi\":\"10.1007/s11538-024-01262-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Forest plantations are economically and environmentally relevant, as they play a key role in timber production and carbon capture. It is expected that the future climate change scenario affects forest growth and modify the rotation age for timber production. However, mathematical models on the effect of climate change on the rotation age for timber production remain still limited. We aim to determine the optimal rotation age that maximizes the net economic benefit of timber volume in a negative scenario from the climatic point of view. For this purpose, a bioeconomic optimal control problem was formulated from a system of Ordinary Differential Equations (ODEs) governed by the state variables live biomass volume, intrinsic growth rate, and area affected by fire. Then, four control variables were associated to the system, representing forest management activities, which are felling, thinning, reforestation, and fire prevention. The existence of optimal control solutions was demonstrated, and the solutions of the optimal control problem were also characterized using Pontryagin’s Maximum Principle. The solutions of the model were approximated numerically by the Forward–Backward Sweep method. To validate the model, two scenarios were considered: a realistic scenario that represents current forestry activities for the exotic species <em>Pinus radiata</em> D. Don, and a pessimistic scenario, which considers environmental conditions conducive to a higher occurrence of forest fires. The optimal solution that maximizes the net benefit of timber volume consists of a strategy that considers all four control variables simultaneously. For felling and thinning, regardless of the scenario considered, the optimal strategy is to spend on both activities depending on the amount of biomass in the field. Similarly, for reforestation, the optimal strategy is to spend as the forest is harvested. In the case of fire prevention, in the realistic scenario, the optimal strategy consists of reducing the expenses in fire prevention because the incidence of fires is lower, whereas in the pessimistic scenario, the opposite is true. It is concluded that the optimal rotation age that maximizes the net economic benefit of timber volume in <em>P. radiata</em> plantations is 24 and 19 years for the realistic and pessimistic scenarios, respectively. This corroborates that the presence of fires influences the determination of the optimal rotation age, and as a consequence, the net economic benefit.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-024-01262-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01262-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
摘要 人工林在木材生产和碳捕获方面发挥着关键作用,因此具有经济和环境意义。预计未来的气候变化会影响森林生长,并改变木材生产的轮伐期。然而,有关气候变化对木材生产轮伐期影响的数学模型仍然有限。我们的目标是确定最佳轮伐期,以便在气候不利的情况下最大限度地提高木材净经济效益。为此,我们通过一个由活体生物量、固有生长率和受火灾影响面积等状态变量控制的常微分方程(ODEs)系统,提出了一个生物经济最优控制问题。然后,将四个控制变量与该系统相关联,分别代表森林管理活动,即砍伐、间伐、重新造林和防火。研究证明了最优控制解的存在,并利用庞特里亚金最大原则对最优控制问题的解进行了表征。利用前向-后向扫频方法对模型的解进行了数值逼近。为了验证该模型,考虑了两种情况:一种是现实情况,即外来树种 Pinus radiata D. Don 目前的林业活动;另一种是悲观情况,即有利于提高森林火灾发生率的环境条件。使木材蓄积量净效益最大化的最佳解决方案包括同时考虑所有四个控制变量的策略。对于砍伐和间伐,无论考虑的是哪种情况,最佳策略都是根据田间生物量的多少来支出这两项活动的费用。同样,在重新造林方面,最佳策略是根据森林的采伐量进行支出。就防火而言,在现实情况下,最佳策略是减少防火开支,因为火灾发生率较低,而在悲观情况下,情况恰恰相反。由此得出的结论是,在现实情况和悲观情况下,使辐射木种植园木材净经济效益最大化的最佳轮伐年龄分别为 24 年和 19 年。这证实了火灾的存在会影响最佳轮伐年龄的确定,从而影响净经济效益。
Optimal Rotation Age in Fast Growing Plantations: A Dynamical Optimization Problem
Abstract
Forest plantations are economically and environmentally relevant, as they play a key role in timber production and carbon capture. It is expected that the future climate change scenario affects forest growth and modify the rotation age for timber production. However, mathematical models on the effect of climate change on the rotation age for timber production remain still limited. We aim to determine the optimal rotation age that maximizes the net economic benefit of timber volume in a negative scenario from the climatic point of view. For this purpose, a bioeconomic optimal control problem was formulated from a system of Ordinary Differential Equations (ODEs) governed by the state variables live biomass volume, intrinsic growth rate, and area affected by fire. Then, four control variables were associated to the system, representing forest management activities, which are felling, thinning, reforestation, and fire prevention. The existence of optimal control solutions was demonstrated, and the solutions of the optimal control problem were also characterized using Pontryagin’s Maximum Principle. The solutions of the model were approximated numerically by the Forward–Backward Sweep method. To validate the model, two scenarios were considered: a realistic scenario that represents current forestry activities for the exotic species Pinus radiata D. Don, and a pessimistic scenario, which considers environmental conditions conducive to a higher occurrence of forest fires. The optimal solution that maximizes the net benefit of timber volume consists of a strategy that considers all four control variables simultaneously. For felling and thinning, regardless of the scenario considered, the optimal strategy is to spend on both activities depending on the amount of biomass in the field. Similarly, for reforestation, the optimal strategy is to spend as the forest is harvested. In the case of fire prevention, in the realistic scenario, the optimal strategy consists of reducing the expenses in fire prevention because the incidence of fires is lower, whereas in the pessimistic scenario, the opposite is true. It is concluded that the optimal rotation age that maximizes the net economic benefit of timber volume in P. radiata plantations is 24 and 19 years for the realistic and pessimistic scenarios, respectively. This corroborates that the presence of fires influences the determination of the optimal rotation age, and as a consequence, the net economic benefit.