{"title":"寄生虫动力学数学模型:基于随机模拟的方法和通过修正的序列型近似贝叶斯计算进行参数估计","authors":"Clement Twumasi, Joanne Cable, Andrey Pepelyshev","doi":"10.1007/s11538-024-01281-5","DOIUrl":null,"url":null,"abstract":"<p>The development of mathematical models for studying newly emerging and re-emerging infectious diseases has gained momentum due to global events. The gyrodactylid-fish system, like many host-parasite systems, serves as a valuable resource for ecological, evolutionary, and epidemiological investigations owing to its ease of experimental manipulation and long-term monitoring. Although this system has an existing individual-based model, it falls short in capturing information about species-specific microhabitat preferences and other biological details for different <i>Gyrodactylus</i> strains across diverse fish populations. This current study introduces a new individual-based stochastic simulation model that uses a hybrid <span>\\(\\tau \\)</span>-leaping algorithm to incorporate this essential data, enhancing our understanding of the complexity of the gyrodactylid-fish system. We compare the infection dynamics of three gyrodactylid strains across three host populations. A modified sequential-type approximate Bayesian computation (ABC) method, based on sequential Monte Carlo and sequential importance sampling, is developed. Additionally, we establish two penalised local-linear regression methods (based on L1 and L2 regularisations) for ABC post-processing analysis to fit our model using existing empirical data. With the support of experimental data and the fitted mathematical model, we address open biological questions for the first time and propose directions for future studies on the gyrodactylid-fish system. The adaptability of the mathematical model extends beyond the gyrodactylid-fish system to other host-parasite systems. Furthermore, the modified ABC methodologies provide efficient calibration for other multi-parameter models characterised by a large set of correlated or independent summary statistics.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"45 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Modelling of Parasite Dynamics: A Stochastic Simulation-Based Approach and Parameter Estimation via Modified Sequential-Type Approximate Bayesian Computation\",\"authors\":\"Clement Twumasi, Joanne Cable, Andrey Pepelyshev\",\"doi\":\"10.1007/s11538-024-01281-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of mathematical models for studying newly emerging and re-emerging infectious diseases has gained momentum due to global events. The gyrodactylid-fish system, like many host-parasite systems, serves as a valuable resource for ecological, evolutionary, and epidemiological investigations owing to its ease of experimental manipulation and long-term monitoring. Although this system has an existing individual-based model, it falls short in capturing information about species-specific microhabitat preferences and other biological details for different <i>Gyrodactylus</i> strains across diverse fish populations. This current study introduces a new individual-based stochastic simulation model that uses a hybrid <span>\\\\(\\\\tau \\\\)</span>-leaping algorithm to incorporate this essential data, enhancing our understanding of the complexity of the gyrodactylid-fish system. We compare the infection dynamics of three gyrodactylid strains across three host populations. A modified sequential-type approximate Bayesian computation (ABC) method, based on sequential Monte Carlo and sequential importance sampling, is developed. Additionally, we establish two penalised local-linear regression methods (based on L1 and L2 regularisations) for ABC post-processing analysis to fit our model using existing empirical data. With the support of experimental data and the fitted mathematical model, we address open biological questions for the first time and propose directions for future studies on the gyrodactylid-fish system. The adaptability of the mathematical model extends beyond the gyrodactylid-fish system to other host-parasite systems. Furthermore, the modified ABC methodologies provide efficient calibration for other multi-parameter models characterised by a large set of correlated or independent summary statistics.</p>\",\"PeriodicalId\":9372,\"journal\":{\"name\":\"Bulletin of Mathematical Biology\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-024-01281-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01281-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Mathematical Modelling of Parasite Dynamics: A Stochastic Simulation-Based Approach and Parameter Estimation via Modified Sequential-Type Approximate Bayesian Computation
The development of mathematical models for studying newly emerging and re-emerging infectious diseases has gained momentum due to global events. The gyrodactylid-fish system, like many host-parasite systems, serves as a valuable resource for ecological, evolutionary, and epidemiological investigations owing to its ease of experimental manipulation and long-term monitoring. Although this system has an existing individual-based model, it falls short in capturing information about species-specific microhabitat preferences and other biological details for different Gyrodactylus strains across diverse fish populations. This current study introduces a new individual-based stochastic simulation model that uses a hybrid \(\tau \)-leaping algorithm to incorporate this essential data, enhancing our understanding of the complexity of the gyrodactylid-fish system. We compare the infection dynamics of three gyrodactylid strains across three host populations. A modified sequential-type approximate Bayesian computation (ABC) method, based on sequential Monte Carlo and sequential importance sampling, is developed. Additionally, we establish two penalised local-linear regression methods (based on L1 and L2 regularisations) for ABC post-processing analysis to fit our model using existing empirical data. With the support of experimental data and the fitted mathematical model, we address open biological questions for the first time and propose directions for future studies on the gyrodactylid-fish system. The adaptability of the mathematical model extends beyond the gyrodactylid-fish system to other host-parasite systems. Furthermore, the modified ABC methodologies provide efficient calibration for other multi-parameter models characterised by a large set of correlated or independent summary statistics.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.