Amandeep Kaur, Geetanjali Singla, Manjinder Singh, Amit Mittal, Ruchi Mittal, Varun Malik
{"title":"利用基于分数级融合混合模型的卫星图像进行棉花作物分类","authors":"Amandeep Kaur, Geetanjali Singla, Manjinder Singh, Amit Mittal, Ruchi Mittal, Varun Malik","doi":"10.1007/s10044-024-01257-0","DOIUrl":null,"url":null,"abstract":"<p>Accurate cotton images are significant component for surveiling cotton development and its precise control. A suitable technique for charting the distribution of cotton at the county or field level must be available to researchers and production managers. The classification of cotton remote sensing models at the county level has significant implications for precision farming, land management, and government decision-making. This work aims to develop a novel cotton crop classification model using satellite images based on soil behaviour. It includes phases like preprocessing, segmentation, feature extraction, and classification. Here, preprocessing is carried out by Gaussian filtering to improve the quality of the input image. Then Modified Deep Joint Segmentation method is employed for the segmentation process. The features such as wide dynamic range vegetation index, simple ratio, Green Chlorophyll index, Transformed vegetation index, and Green leaf area index are extracted for classifying the input. The hybrid Improved CNN (ICNN) and Bidirectional Gated recurrent Unit (Bi-GRU) have used for classification purposes, which is computed by the improved score level fusion. The suggested new hybrid optimization model known as the Battle Royale assisted Butterfly optimization algorithm (BRABOA) is used for adjusting the hidden neuron count of both the ICNN and Bi-GRU classifiers for improving the accuracy. At last, the efficiency of the suggested model is then evaluated to other schemes using a variety of metrics. The suggested HC + BRABOA method obtains a maximum accuracy of (0.95) over conventional methods at a learning percentage of 90% for classifying cotton crops using satellite images.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"32 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cotton crop classification using satellite images with score level fusion based hybrid model\",\"authors\":\"Amandeep Kaur, Geetanjali Singla, Manjinder Singh, Amit Mittal, Ruchi Mittal, Varun Malik\",\"doi\":\"10.1007/s10044-024-01257-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate cotton images are significant component for surveiling cotton development and its precise control. A suitable technique for charting the distribution of cotton at the county or field level must be available to researchers and production managers. The classification of cotton remote sensing models at the county level has significant implications for precision farming, land management, and government decision-making. This work aims to develop a novel cotton crop classification model using satellite images based on soil behaviour. It includes phases like preprocessing, segmentation, feature extraction, and classification. Here, preprocessing is carried out by Gaussian filtering to improve the quality of the input image. Then Modified Deep Joint Segmentation method is employed for the segmentation process. The features such as wide dynamic range vegetation index, simple ratio, Green Chlorophyll index, Transformed vegetation index, and Green leaf area index are extracted for classifying the input. The hybrid Improved CNN (ICNN) and Bidirectional Gated recurrent Unit (Bi-GRU) have used for classification purposes, which is computed by the improved score level fusion. The suggested new hybrid optimization model known as the Battle Royale assisted Butterfly optimization algorithm (BRABOA) is used for adjusting the hidden neuron count of both the ICNN and Bi-GRU classifiers for improving the accuracy. At last, the efficiency of the suggested model is then evaluated to other schemes using a variety of metrics. The suggested HC + BRABOA method obtains a maximum accuracy of (0.95) over conventional methods at a learning percentage of 90% for classifying cotton crops using satellite images.</p>\",\"PeriodicalId\":54639,\"journal\":{\"name\":\"Pattern Analysis and Applications\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Analysis and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10044-024-01257-0\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01257-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Cotton crop classification using satellite images with score level fusion based hybrid model
Accurate cotton images are significant component for surveiling cotton development and its precise control. A suitable technique for charting the distribution of cotton at the county or field level must be available to researchers and production managers. The classification of cotton remote sensing models at the county level has significant implications for precision farming, land management, and government decision-making. This work aims to develop a novel cotton crop classification model using satellite images based on soil behaviour. It includes phases like preprocessing, segmentation, feature extraction, and classification. Here, preprocessing is carried out by Gaussian filtering to improve the quality of the input image. Then Modified Deep Joint Segmentation method is employed for the segmentation process. The features such as wide dynamic range vegetation index, simple ratio, Green Chlorophyll index, Transformed vegetation index, and Green leaf area index are extracted for classifying the input. The hybrid Improved CNN (ICNN) and Bidirectional Gated recurrent Unit (Bi-GRU) have used for classification purposes, which is computed by the improved score level fusion. The suggested new hybrid optimization model known as the Battle Royale assisted Butterfly optimization algorithm (BRABOA) is used for adjusting the hidden neuron count of both the ICNN and Bi-GRU classifiers for improving the accuracy. At last, the efficiency of the suggested model is then evaluated to other schemes using a variety of metrics. The suggested HC + BRABOA method obtains a maximum accuracy of (0.95) over conventional methods at a learning percentage of 90% for classifying cotton crops using satellite images.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.