Alexandra Obenewaa Kwakye, Kazuhiro Fukada, Toya Ishii, Masahiro Ogawa
{"title":"D-Allulose 对不同植物来源淀粉的糊化和再结晶特性的影响","authors":"Alexandra Obenewaa Kwakye, Kazuhiro Fukada, Toya Ishii, Masahiro Ogawa","doi":"10.1002/star.202300243","DOIUrl":null,"url":null,"abstract":"D‐allulose (Alu), a rare sugar, has proven to be a low‐caloric sugar with potential health benefits. Previous studies have reported that compared with sucrose (Suc), Alu suppresses an increase in gelatinization temperature and retards retrogradation in glutinous rice starch. This study investigates the effect of Alu on gelatinization, water activity, and recrystallization behavior of various starch sources (potato, wheat, tapioca, corn, normal rice, and glutinous rice). MicroDSC results show that compared with D‐glucose (Glc), D‐fructose (Fru), and Suc, Alu does not significantly increase the gelatinization temperatures of the starch suspensions. Alu decreases water activity in the same degree as Fru in wheat, tapioca, corn, normal rice, and glutinous rice starch gels but not potato starch gels. Alu has a stronger suppression effect on recrystallization of normal and glutinous rice compared to potato, wheat, and tapioca after 14‐day storage of 2% starch pastes at 4 °C. These findings suggest that Alu can be a better plasticizer than Suc, Glc, and Fru in most starch sources but retards recrystallization of only normal and glutinous rice starches.","PeriodicalId":501569,"journal":{"name":"Starch","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of D‐Allulose on the Gelatinization and Recrystallization Properties of Starches from Different Botanical Sources\",\"authors\":\"Alexandra Obenewaa Kwakye, Kazuhiro Fukada, Toya Ishii, Masahiro Ogawa\",\"doi\":\"10.1002/star.202300243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"D‐allulose (Alu), a rare sugar, has proven to be a low‐caloric sugar with potential health benefits. Previous studies have reported that compared with sucrose (Suc), Alu suppresses an increase in gelatinization temperature and retards retrogradation in glutinous rice starch. This study investigates the effect of Alu on gelatinization, water activity, and recrystallization behavior of various starch sources (potato, wheat, tapioca, corn, normal rice, and glutinous rice). MicroDSC results show that compared with D‐glucose (Glc), D‐fructose (Fru), and Suc, Alu does not significantly increase the gelatinization temperatures of the starch suspensions. Alu decreases water activity in the same degree as Fru in wheat, tapioca, corn, normal rice, and glutinous rice starch gels but not potato starch gels. Alu has a stronger suppression effect on recrystallization of normal and glutinous rice compared to potato, wheat, and tapioca after 14‐day storage of 2% starch pastes at 4 °C. These findings suggest that Alu can be a better plasticizer than Suc, Glc, and Fru in most starch sources but retards recrystallization of only normal and glutinous rice starches.\",\"PeriodicalId\":501569,\"journal\":{\"name\":\"Starch\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Starch\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/star.202300243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Starch","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/star.202300243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Effects of D‐Allulose on the Gelatinization and Recrystallization Properties of Starches from Different Botanical Sources
D‐allulose (Alu), a rare sugar, has proven to be a low‐caloric sugar with potential health benefits. Previous studies have reported that compared with sucrose (Suc), Alu suppresses an increase in gelatinization temperature and retards retrogradation in glutinous rice starch. This study investigates the effect of Alu on gelatinization, water activity, and recrystallization behavior of various starch sources (potato, wheat, tapioca, corn, normal rice, and glutinous rice). MicroDSC results show that compared with D‐glucose (Glc), D‐fructose (Fru), and Suc, Alu does not significantly increase the gelatinization temperatures of the starch suspensions. Alu decreases water activity in the same degree as Fru in wheat, tapioca, corn, normal rice, and glutinous rice starch gels but not potato starch gels. Alu has a stronger suppression effect on recrystallization of normal and glutinous rice compared to potato, wheat, and tapioca after 14‐day storage of 2% starch pastes at 4 °C. These findings suggest that Alu can be a better plasticizer than Suc, Glc, and Fru in most starch sources but retards recrystallization of only normal and glutinous rice starches.