用于潜在变量分数估计的潜在变量森林

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Franz Classe, Christoph Kern
{"title":"用于潜在变量分数估计的潜在变量森林","authors":"Franz Classe, Christoph Kern","doi":"10.1177/00131644241237502","DOIUrl":null,"url":null,"abstract":"We develop a latent variable forest (LV Forest) algorithm for the estimation of latent variable scores with one or more latent variables. LV Forest estimates unbiased latent variable scores based on confirmatory factor analysis (CFA) models with ordinal and/or numerical response variables. Through parametric model restrictions paired with a nonparametric tree-based machine learning approach, LV Forest estimates latent variable scores using models that are unbiased with respect to relevant subgroups in the population. This way, estimated latent variable scores are interpretable with respect to systematic influences of covariates without being biased by these variables. By building a tree ensemble, LV Forest takes parameter heterogeneity in latent variable modeling into account to capture subgroups with both good model fit and stable parameter estimates. We apply LV Forest to simulated data with heterogeneous model parameters as well as to real large-scale survey data. We show that LV Forest improves the accuracy of score estimation if parameter heterogeneity is present.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent Variable Forests for Latent Variable Score Estimation\",\"authors\":\"Franz Classe, Christoph Kern\",\"doi\":\"10.1177/00131644241237502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a latent variable forest (LV Forest) algorithm for the estimation of latent variable scores with one or more latent variables. LV Forest estimates unbiased latent variable scores based on confirmatory factor analysis (CFA) models with ordinal and/or numerical response variables. Through parametric model restrictions paired with a nonparametric tree-based machine learning approach, LV Forest estimates latent variable scores using models that are unbiased with respect to relevant subgroups in the population. This way, estimated latent variable scores are interpretable with respect to systematic influences of covariates without being biased by these variables. By building a tree ensemble, LV Forest takes parameter heterogeneity in latent variable modeling into account to capture subgroups with both good model fit and stable parameter estimates. We apply LV Forest to simulated data with heterogeneous model parameters as well as to real large-scale survey data. We show that LV Forest improves the accuracy of score estimation if parameter heterogeneity is present.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644241237502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644241237502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种潜变量森林(LV Forest)算法,用于估算具有一个或多个潜变量的潜变量得分。LV Forest 基于带有序数和/或数字响应变量的确证因子分析(CFA)模型估算无偏潜变量得分。通过参数模型限制与基于树的非参数机器学习方法的搭配,LV Forest 利用模型估算潜变量得分,这些模型对人群中的相关子群是无偏的。这样,估算出的潜在变量得分就可以解释协变量的系统性影响,而不会受到这些变量的影响。通过构建树状集合,LV Forest 将潜变量建模中的参数异质性考虑在内,从而捕捉到模型拟合度高、参数估计值稳定的亚群。我们将 LV Forest 应用于具有异质性模型参数的模拟数据以及真实的大规模调查数据。我们的研究表明,如果存在参数异质性,LV Forest 可以提高分数估计的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latent Variable Forests for Latent Variable Score Estimation
We develop a latent variable forest (LV Forest) algorithm for the estimation of latent variable scores with one or more latent variables. LV Forest estimates unbiased latent variable scores based on confirmatory factor analysis (CFA) models with ordinal and/or numerical response variables. Through parametric model restrictions paired with a nonparametric tree-based machine learning approach, LV Forest estimates latent variable scores using models that are unbiased with respect to relevant subgroups in the population. This way, estimated latent variable scores are interpretable with respect to systematic influences of covariates without being biased by these variables. By building a tree ensemble, LV Forest takes parameter heterogeneity in latent variable modeling into account to capture subgroups with both good model fit and stable parameter estimates. We apply LV Forest to simulated data with heterogeneous model parameters as well as to real large-scale survey data. We show that LV Forest improves the accuracy of score estimation if parameter heterogeneity is present.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信