Haiyuan Zhang, Fushan Feng, Fanfang Meng, Guangjian Wang, Liancheng Bing, Qinqin Zhang, Fang Wang, Haitao Fu, Dezhi Han
{"title":"优化丙烷脱氢过程中 Pt-Sn/MgAl2O4 催化剂对丙烯的选择性和稳定性","authors":"Haiyuan Zhang, Fushan Feng, Fanfang Meng, Guangjian Wang, Liancheng Bing, Qinqin Zhang, Fang Wang, Haitao Fu, Dezhi Han","doi":"10.1007/s10934-024-01578-9","DOIUrl":null,"url":null,"abstract":"<div><p>Propylene is an essential chemical feedstock, which needs efficient and stable production technology to meet its increasing industrial demand. In this work, the Pt–Sn/MgAl<sub>2</sub>O<sub>4</sub> catalysts fabricated via the incipient wetness impregnation method were used for propane dehydrogenation to propylene (PDH). The effect of Sn on reaction performance was investigated to determine the optimal loading amount. The characterization results from XRD, N<sub>2</sub> physisorption, TEM, H<sub>2</sub>-TPR, NH<sub>3</sub>-TPD, and TGA elucidated the physicochemical characteristic evolution with varied Sn content in the catalysts. The Pt0.3Sn/MgAl<sub>2</sub>O<sub>4</sub> achieved the best propane conversion of 40.9% and propylene selectivity of 82.5% at 600 °C. Sn addition promoted Pt dispersion, enhanced metal-support interactions, and inhibited the side reactions. The MgAl<sub>2</sub>O<sub>4</sub> support could suppress the coke formation and maintain propylene selectivity. This work demonstrates the Pt–Sn/MgAl<sub>2</sub>O<sub>4</sub> catalysts are effective and durable for PDH to meet propylene demand.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 4","pages":"1257 - 1267"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing propylene selectivity and stability over Pt–Sn/MgAl2O4 catalysts for propane dehydrogenation\",\"authors\":\"Haiyuan Zhang, Fushan Feng, Fanfang Meng, Guangjian Wang, Liancheng Bing, Qinqin Zhang, Fang Wang, Haitao Fu, Dezhi Han\",\"doi\":\"10.1007/s10934-024-01578-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Propylene is an essential chemical feedstock, which needs efficient and stable production technology to meet its increasing industrial demand. In this work, the Pt–Sn/MgAl<sub>2</sub>O<sub>4</sub> catalysts fabricated via the incipient wetness impregnation method were used for propane dehydrogenation to propylene (PDH). The effect of Sn on reaction performance was investigated to determine the optimal loading amount. The characterization results from XRD, N<sub>2</sub> physisorption, TEM, H<sub>2</sub>-TPR, NH<sub>3</sub>-TPD, and TGA elucidated the physicochemical characteristic evolution with varied Sn content in the catalysts. The Pt0.3Sn/MgAl<sub>2</sub>O<sub>4</sub> achieved the best propane conversion of 40.9% and propylene selectivity of 82.5% at 600 °C. Sn addition promoted Pt dispersion, enhanced metal-support interactions, and inhibited the side reactions. The MgAl<sub>2</sub>O<sub>4</sub> support could suppress the coke formation and maintain propylene selectivity. This work demonstrates the Pt–Sn/MgAl<sub>2</sub>O<sub>4</sub> catalysts are effective and durable for PDH to meet propylene demand.</p></div>\",\"PeriodicalId\":660,\"journal\":{\"name\":\"Journal of Porous Materials\",\"volume\":\"31 4\",\"pages\":\"1257 - 1267\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10934-024-01578-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01578-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
丙烯是一种重要的化工原料,需要高效稳定的生产技术来满足日益增长的工业需求。本研究采用初湿浸渍法制备了 Pt-Sn/MgAl2O4 催化剂,用于丙烷脱氢制丙烯 (PDH)。研究了 Sn 对反应性能的影响,以确定最佳负载量。来自 XRD、N2 物理吸附、TEM、H2-TPR、NH3-TPD 和 TGA 的表征结果阐明了催化剂中不同锡含量的理化特性演变。600 °C 时,Pt0.3Sn/MgAl2O4 的丙烷转化率达到 40.9%,丙烯选择性达到 82.5%。锡的加入促进了铂的分散,增强了金属与载体的相互作用,并抑制了副反应。MgAl2O4 支持可抑制焦炭的形成并保持丙烯的选择性。这项研究表明,Pt-Sn/MgAl2O4 催化剂能有效、持久地用于 PDH,以满足丙烯的需求。
Optimizing propylene selectivity and stability over Pt–Sn/MgAl2O4 catalysts for propane dehydrogenation
Propylene is an essential chemical feedstock, which needs efficient and stable production technology to meet its increasing industrial demand. In this work, the Pt–Sn/MgAl2O4 catalysts fabricated via the incipient wetness impregnation method were used for propane dehydrogenation to propylene (PDH). The effect of Sn on reaction performance was investigated to determine the optimal loading amount. The characterization results from XRD, N2 physisorption, TEM, H2-TPR, NH3-TPD, and TGA elucidated the physicochemical characteristic evolution with varied Sn content in the catalysts. The Pt0.3Sn/MgAl2O4 achieved the best propane conversion of 40.9% and propylene selectivity of 82.5% at 600 °C. Sn addition promoted Pt dispersion, enhanced metal-support interactions, and inhibited the side reactions. The MgAl2O4 support could suppress the coke formation and maintain propylene selectivity. This work demonstrates the Pt–Sn/MgAl2O4 catalysts are effective and durable for PDH to meet propylene demand.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.