Oak Z. Chi, Xia Liu, Harvey Fortus, Guy Werlen, Estela Jacinto, Harvey R. Weiss
{"title":"抑制 p70 核糖体 S6 激酶 (S6K1) 可降低自闭症-小脑硬化症大鼠模型的皮质血流量","authors":"Oak Z. Chi, Xia Liu, Harvey Fortus, Guy Werlen, Estela Jacinto, Harvey R. Weiss","doi":"10.1007/s12017-024-08780-7","DOIUrl":null,"url":null,"abstract":"<p>The manifestations of tuberous sclerosis complex (TSC) in humans include epilepsy, autism spectrum disorders (ASD) and intellectual disability. Previous studies suggested the linkage of TSC to altered cerebral blood flow and metabolic dysfunction. We previously reported a significant elevation in cerebral blood flow in an animal model of TSC and autism of young Eker rats. Inhibition of the mammalian target of rapamycin (mTOR) by rapamycin could restore normal oxygen consumption and cerebral blood flow. In this study, we investigated whether inhibiting a component of the mTOR signaling pathway, p70 ribosomal S6 kinase (S6K1), would yield comparable effects. Control Long Evans and Eker rats were divided into vehicle and PF-4708671 (S6K1 inhibitor, 75 mg/kg for 1 h) treated groups. Cerebral regional blood flow (<sup>14</sup>C-iodoantipyrine) was determined in isoflurane anesthetized rats. We found significantly increased basal cortical (+ 32%) and hippocampal (+ 15%) blood flow in the Eker rats. PF-4708671 significantly lowered regional blood flow in the cortex and hippocampus of the Eker rats. PF-4708671 did not significantly lower blood flow in these regions in the control Long Evans rats. Phosphorylation of S6-Ser240/244 and Akt-Ser473 was moderately decreased in Eker rats but only the latter reached statistical significance upon PF-4708671 treatment. Our findings suggest that moderate inhibition of S6K1 with PF-4708671 helps to restore normal cortical blood flow in Eker rats and that this information might have therapeutic potential in tuberous sclerosis complex and autism.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"279 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of p70 Ribosomal S6 Kinase (S6K1) Reduces Cortical Blood Flow in a Rat Model of Autism-Tuberous Sclerosis\",\"authors\":\"Oak Z. Chi, Xia Liu, Harvey Fortus, Guy Werlen, Estela Jacinto, Harvey R. Weiss\",\"doi\":\"10.1007/s12017-024-08780-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The manifestations of tuberous sclerosis complex (TSC) in humans include epilepsy, autism spectrum disorders (ASD) and intellectual disability. Previous studies suggested the linkage of TSC to altered cerebral blood flow and metabolic dysfunction. We previously reported a significant elevation in cerebral blood flow in an animal model of TSC and autism of young Eker rats. Inhibition of the mammalian target of rapamycin (mTOR) by rapamycin could restore normal oxygen consumption and cerebral blood flow. In this study, we investigated whether inhibiting a component of the mTOR signaling pathway, p70 ribosomal S6 kinase (S6K1), would yield comparable effects. Control Long Evans and Eker rats were divided into vehicle and PF-4708671 (S6K1 inhibitor, 75 mg/kg for 1 h) treated groups. Cerebral regional blood flow (<sup>14</sup>C-iodoantipyrine) was determined in isoflurane anesthetized rats. We found significantly increased basal cortical (+ 32%) and hippocampal (+ 15%) blood flow in the Eker rats. PF-4708671 significantly lowered regional blood flow in the cortex and hippocampus of the Eker rats. PF-4708671 did not significantly lower blood flow in these regions in the control Long Evans rats. Phosphorylation of S6-Ser240/244 and Akt-Ser473 was moderately decreased in Eker rats but only the latter reached statistical significance upon PF-4708671 treatment. Our findings suggest that moderate inhibition of S6K1 with PF-4708671 helps to restore normal cortical blood flow in Eker rats and that this information might have therapeutic potential in tuberous sclerosis complex and autism.</p>\",\"PeriodicalId\":19304,\"journal\":{\"name\":\"NeuroMolecular Medicine\",\"volume\":\"279 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroMolecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12017-024-08780-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-024-08780-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Inhibition of p70 Ribosomal S6 Kinase (S6K1) Reduces Cortical Blood Flow in a Rat Model of Autism-Tuberous Sclerosis
The manifestations of tuberous sclerosis complex (TSC) in humans include epilepsy, autism spectrum disorders (ASD) and intellectual disability. Previous studies suggested the linkage of TSC to altered cerebral blood flow and metabolic dysfunction. We previously reported a significant elevation in cerebral blood flow in an animal model of TSC and autism of young Eker rats. Inhibition of the mammalian target of rapamycin (mTOR) by rapamycin could restore normal oxygen consumption and cerebral blood flow. In this study, we investigated whether inhibiting a component of the mTOR signaling pathway, p70 ribosomal S6 kinase (S6K1), would yield comparable effects. Control Long Evans and Eker rats were divided into vehicle and PF-4708671 (S6K1 inhibitor, 75 mg/kg for 1 h) treated groups. Cerebral regional blood flow (14C-iodoantipyrine) was determined in isoflurane anesthetized rats. We found significantly increased basal cortical (+ 32%) and hippocampal (+ 15%) blood flow in the Eker rats. PF-4708671 significantly lowered regional blood flow in the cortex and hippocampus of the Eker rats. PF-4708671 did not significantly lower blood flow in these regions in the control Long Evans rats. Phosphorylation of S6-Ser240/244 and Akt-Ser473 was moderately decreased in Eker rats but only the latter reached statistical significance upon PF-4708671 treatment. Our findings suggest that moderate inhibition of S6K1 with PF-4708671 helps to restore normal cortical blood flow in Eker rats and that this information might have therapeutic potential in tuberous sclerosis complex and autism.
期刊介绍:
NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.