利用废纸制备超疏水纤维素气凝胶海绵及其在油水分离中的应用

IF 2.5 4区 材料科学 Q2 CHEMISTRY, APPLIED
Soheil Bahraminia, Mansoor Anbia, Arezoo Mirzaei
{"title":"利用废纸制备超疏水纤维素气凝胶海绵及其在油水分离中的应用","authors":"Soheil Bahraminia,&nbsp;Mansoor Anbia,&nbsp;Arezoo Mirzaei","doi":"10.1007/s10934-024-01607-7","DOIUrl":null,"url":null,"abstract":"<div><p>The separation of oil and water mixtures has become crucial globally due to the frequent incidents of petroleum substances and organic solvents leaking into water and the growing necessity to treat industrial wastes containing oil. Most methods for removing oily pollutants are often time-consuming, costly, and low-efficiency, and they also cause secondary pollution. The absorption method of oily pollutants has been noticed due to its high efficiency, low energy requirement, and simple application. Aerogels are considered one of the most attractive absorbents for separating oil and water mixtures due to their unique characteristics, such as low density, high porosity, and suitable oil absorption capacity. In this research, a superhydrophobic cellulose aerogel was prepared using crystalline cellulose extracted from waste paper, TiO<sub>2</sub>, SiO<sub>2</sub> nanoparticles, and vinyltrimethoxysilane by a simple dip-coating method for the first time. It was then utilized to remove oily pollutants and organic solvents from water. XRD, FESEM, EDS, FT-IR, DLS, BET, and water contact angle measurements were employed to identify and characterize the synthesized materials and the modified aerogel. The prepared cellulose aerogel exhibited a water contact angle of 163.39˚ and a sorption capacity ranging from 28.5 to 31.5 g.g<sup>− 1</sup> for various oily pollutants and organic solvents. Additionally, this superhydrophobic aerogel demonstrated excellent reusability and effectively removed emulsified oil droplets in water. This research showed that the aerogel made from waste paper can effectively separate oily pollutants and organic solvents from water.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 4","pages":"1335 - 1350"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of superhydrophobic cellulose aerogel sponge from waste paper and its application in oil-water separation\",\"authors\":\"Soheil Bahraminia,&nbsp;Mansoor Anbia,&nbsp;Arezoo Mirzaei\",\"doi\":\"10.1007/s10934-024-01607-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The separation of oil and water mixtures has become crucial globally due to the frequent incidents of petroleum substances and organic solvents leaking into water and the growing necessity to treat industrial wastes containing oil. Most methods for removing oily pollutants are often time-consuming, costly, and low-efficiency, and they also cause secondary pollution. The absorption method of oily pollutants has been noticed due to its high efficiency, low energy requirement, and simple application. Aerogels are considered one of the most attractive absorbents for separating oil and water mixtures due to their unique characteristics, such as low density, high porosity, and suitable oil absorption capacity. In this research, a superhydrophobic cellulose aerogel was prepared using crystalline cellulose extracted from waste paper, TiO<sub>2</sub>, SiO<sub>2</sub> nanoparticles, and vinyltrimethoxysilane by a simple dip-coating method for the first time. It was then utilized to remove oily pollutants and organic solvents from water. XRD, FESEM, EDS, FT-IR, DLS, BET, and water contact angle measurements were employed to identify and characterize the synthesized materials and the modified aerogel. The prepared cellulose aerogel exhibited a water contact angle of 163.39˚ and a sorption capacity ranging from 28.5 to 31.5 g.g<sup>− 1</sup> for various oily pollutants and organic solvents. Additionally, this superhydrophobic aerogel demonstrated excellent reusability and effectively removed emulsified oil droplets in water. This research showed that the aerogel made from waste paper can effectively separate oily pollutants and organic solvents from water.</p></div>\",\"PeriodicalId\":660,\"journal\":{\"name\":\"Journal of Porous Materials\",\"volume\":\"31 4\",\"pages\":\"1335 - 1350\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10934-024-01607-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01607-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

由于石油物质和有机溶剂泄漏到水中的事件频发,以及处理含油工业废物的必要性日益增加,油水混合物的分离在全球范围内变得至关重要。大多数去除油类污染物的方法往往耗时长、成本高、效率低,而且还会造成二次污染。吸附油类污染物的方法因其效率高、能耗低、应用简单而受到关注。气凝胶因其低密度、高孔隙率和合适的吸油能力等独特特性,被认为是分离油水混合物最有吸引力的吸附剂之一。本研究首次使用从废纸中提取的结晶纤维素、TiO2、SiO2 纳米粒子和乙烯基三甲氧基硅烷,通过简单的浸涂法制备了超疏水纤维素气凝胶。然后利用它来去除水中的油性污染物和有机溶剂。通过 XRD、FESEM、EDS、FT-IR、DLS、BET 和水接触角测量,对合成材料和改性气凝胶进行了鉴定和表征。所制备的纤维素气凝胶的水接触角为 163.39˚,对各种油性污染物和有机溶剂的吸附能力为 28.5 至 31.5 g.g-1。此外,这种超疏水气凝胶还具有良好的重复使用性,能有效去除水中的乳化油滴。这项研究表明,用废纸制成的气凝胶能有效分离水中的油性污染物和有机溶剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Preparation of superhydrophobic cellulose aerogel sponge from waste paper and its application in oil-water separation

Preparation of superhydrophobic cellulose aerogel sponge from waste paper and its application in oil-water separation

The separation of oil and water mixtures has become crucial globally due to the frequent incidents of petroleum substances and organic solvents leaking into water and the growing necessity to treat industrial wastes containing oil. Most methods for removing oily pollutants are often time-consuming, costly, and low-efficiency, and they also cause secondary pollution. The absorption method of oily pollutants has been noticed due to its high efficiency, low energy requirement, and simple application. Aerogels are considered one of the most attractive absorbents for separating oil and water mixtures due to their unique characteristics, such as low density, high porosity, and suitable oil absorption capacity. In this research, a superhydrophobic cellulose aerogel was prepared using crystalline cellulose extracted from waste paper, TiO2, SiO2 nanoparticles, and vinyltrimethoxysilane by a simple dip-coating method for the first time. It was then utilized to remove oily pollutants and organic solvents from water. XRD, FESEM, EDS, FT-IR, DLS, BET, and water contact angle measurements were employed to identify and characterize the synthesized materials and the modified aerogel. The prepared cellulose aerogel exhibited a water contact angle of 163.39˚ and a sorption capacity ranging from 28.5 to 31.5 g.g− 1 for various oily pollutants and organic solvents. Additionally, this superhydrophobic aerogel demonstrated excellent reusability and effectively removed emulsified oil droplets in water. This research showed that the aerogel made from waste paper can effectively separate oily pollutants and organic solvents from water.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Porous Materials
Journal of Porous Materials 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.70%
发文量
203
审稿时长
2.6 months
期刊介绍: The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials. Porous materials include microporous materials with 50 nm pores. Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信