Liping Qu, Yaquan Wang, Wenrong Liu, Lingzhen Bu, Yitong Huang, Kailiang Chu, Niandong Guo, Juncai Sang, Xian Zhang, Xuemei Su, Yaoning Li
{"title":"用于吸附挥发性有机化合物的无粘结剂高 SiO2/Al2O3 比率 Beta/ZSM-5 异形复合材料","authors":"Liping Qu, Yaquan Wang, Wenrong Liu, Lingzhen Bu, Yitong Huang, Kailiang Chu, Niandong Guo, Juncai Sang, Xian Zhang, Xuemei Su, Yaoning Li","doi":"10.1007/s10934-024-01593-w","DOIUrl":null,"url":null,"abstract":"<div><p>Volatile organic compounds (VOCs) are primary components of air pollutants that pose a risk to the environment and public health. Adsorption is regarded as one of the most effective and practical strategies for dealing with VOCs contamination. A series of shaped binderless Beta/ZSM-5 composites were produced by a vapor-phase transfer method and dealuminated using a sulfuric acid solution to increase SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratio after steaming treatment to further increase the hydrophobicity of the samples. The shaped binderless Beta/ZSM-5 composites were characterized with XRD, SEM, TEM, XRF, NMR and N<sub>2</sub> adsorption-desorption. The VOCs adsorption properties of the dealuminated Beta/ZSM-5 mesoporous composites and microporous ZSM-5 zeolites were assessed using dynamic adsorption experiments and temperature-programmed desorption (TPD) under both dry and wet environments. The results revealed that the dealuminated Beta/ZSM-5 composites have larger specific surface area and mesopore volume as well as strong hydrophobicity, and exhibit higher toluene, butyl acetate and o-xylene adsorption capacity than ZSM-5 under either dry or wet environments.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 4","pages":"1411 - 1424"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10934-024-01593-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Shaped binderless high SiO2/Al2O3 ratio Beta/ZSM-5 composites for volatile organic compounds adsorption\",\"authors\":\"Liping Qu, Yaquan Wang, Wenrong Liu, Lingzhen Bu, Yitong Huang, Kailiang Chu, Niandong Guo, Juncai Sang, Xian Zhang, Xuemei Su, Yaoning Li\",\"doi\":\"10.1007/s10934-024-01593-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Volatile organic compounds (VOCs) are primary components of air pollutants that pose a risk to the environment and public health. Adsorption is regarded as one of the most effective and practical strategies for dealing with VOCs contamination. A series of shaped binderless Beta/ZSM-5 composites were produced by a vapor-phase transfer method and dealuminated using a sulfuric acid solution to increase SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratio after steaming treatment to further increase the hydrophobicity of the samples. The shaped binderless Beta/ZSM-5 composites were characterized with XRD, SEM, TEM, XRF, NMR and N<sub>2</sub> adsorption-desorption. The VOCs adsorption properties of the dealuminated Beta/ZSM-5 mesoporous composites and microporous ZSM-5 zeolites were assessed using dynamic adsorption experiments and temperature-programmed desorption (TPD) under both dry and wet environments. The results revealed that the dealuminated Beta/ZSM-5 composites have larger specific surface area and mesopore volume as well as strong hydrophobicity, and exhibit higher toluene, butyl acetate and o-xylene adsorption capacity than ZSM-5 under either dry or wet environments.</p></div>\",\"PeriodicalId\":660,\"journal\":{\"name\":\"Journal of Porous Materials\",\"volume\":\"31 4\",\"pages\":\"1411 - 1424\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10934-024-01593-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10934-024-01593-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01593-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Shaped binderless high SiO2/Al2O3 ratio Beta/ZSM-5 composites for volatile organic compounds adsorption
Volatile organic compounds (VOCs) are primary components of air pollutants that pose a risk to the environment and public health. Adsorption is regarded as one of the most effective and practical strategies for dealing with VOCs contamination. A series of shaped binderless Beta/ZSM-5 composites were produced by a vapor-phase transfer method and dealuminated using a sulfuric acid solution to increase SiO2/Al2O3 ratio after steaming treatment to further increase the hydrophobicity of the samples. The shaped binderless Beta/ZSM-5 composites were characterized with XRD, SEM, TEM, XRF, NMR and N2 adsorption-desorption. The VOCs adsorption properties of the dealuminated Beta/ZSM-5 mesoporous composites and microporous ZSM-5 zeolites were assessed using dynamic adsorption experiments and temperature-programmed desorption (TPD) under both dry and wet environments. The results revealed that the dealuminated Beta/ZSM-5 composites have larger specific surface area and mesopore volume as well as strong hydrophobicity, and exhibit higher toluene, butyl acetate and o-xylene adsorption capacity than ZSM-5 under either dry or wet environments.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.