Yue Qiao, Xiaodan Jia, Yue Wang, Lin Liu, Mengchao Zhang and Xiue Jiang
{"title":"聚多巴胺封装过氧化锌纳米颗粒针对新陈代谢-氧化还原回路的肿瘤适应性进行温和的光热治疗","authors":"Yue Qiao, Xiaodan Jia, Yue Wang, Lin Liu, Mengchao Zhang and Xiue Jiang","doi":"10.1039/D4NH00070F","DOIUrl":null,"url":null,"abstract":"<p >Regulating the metabolism-redox circuit of cancer cells has emerged as an attractive strategy to improve the therapeutic outcome, while often confronting the glaring issue of resistance due to the multiple adaptive responses of tumor cells. This study presents a simple yet efficient approach to regulate this circuit simultaneously against tumor adaptability by utilizing polydopamine-encapsulated zinc peroxide nanoparticles (ZnO<small><sub>2</sub></small>@PDA NPs). The nanoparticles could deliver large amounts of Zn<small><sup>2+</sup></small> and H<small><sub>2</sub></small>O<small><sub>2</sub></small> into tumor cells to unfold an intracellular self-amplifying loop for breaking the balance in zinc and redox homeostasis by H<small><sub>2</sub></small>O<small><sub>2</sub></small>-mediated endogenous Zn<small><sup>2+</sup></small> release from metallothioneins due to its oxidation by H<small><sub>2</sub></small>O<small><sub>2</sub></small> and Zn<small><sup>2+</sup></small>-induced <em>in situ</em> H<small><sub>2</sub></small>O<small><sub>2</sub></small> production by disturbing mitochondrial respiration, ultimately disrupting tumor adaptability to exogenous stimuli. The elevated levels of Zn<small><sup>2+</sup></small> and H<small><sub>2</sub></small>O<small><sub>2</sub></small> also inhibited adenosine triphosphate (ATP) generation from glycolysis and mitochondrial respiration to disrupt energy adaptability. Furthermore, insufficient ATP supply could reduce glutathione and heat shock protein expression, thereby sensitizing oxidative stress and enabling PDA-mediated mild photothermal therapy (PTT). Consequently, this trinity nanoplatform, which integrated dual-starvation therapy, amplified oxidative stress, and mild PTT, demonstrated outstanding therapeutic effects and a facile strategy.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 6","pages":" 1002-1012"},"PeriodicalIF":8.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polydopamine-encapsulated zinc peroxide nanoparticles to target the metabolism-redox circuit against tumor adaptability for mild photothermal therapy†\",\"authors\":\"Yue Qiao, Xiaodan Jia, Yue Wang, Lin Liu, Mengchao Zhang and Xiue Jiang\",\"doi\":\"10.1039/D4NH00070F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Regulating the metabolism-redox circuit of cancer cells has emerged as an attractive strategy to improve the therapeutic outcome, while often confronting the glaring issue of resistance due to the multiple adaptive responses of tumor cells. This study presents a simple yet efficient approach to regulate this circuit simultaneously against tumor adaptability by utilizing polydopamine-encapsulated zinc peroxide nanoparticles (ZnO<small><sub>2</sub></small>@PDA NPs). The nanoparticles could deliver large amounts of Zn<small><sup>2+</sup></small> and H<small><sub>2</sub></small>O<small><sub>2</sub></small> into tumor cells to unfold an intracellular self-amplifying loop for breaking the balance in zinc and redox homeostasis by H<small><sub>2</sub></small>O<small><sub>2</sub></small>-mediated endogenous Zn<small><sup>2+</sup></small> release from metallothioneins due to its oxidation by H<small><sub>2</sub></small>O<small><sub>2</sub></small> and Zn<small><sup>2+</sup></small>-induced <em>in situ</em> H<small><sub>2</sub></small>O<small><sub>2</sub></small> production by disturbing mitochondrial respiration, ultimately disrupting tumor adaptability to exogenous stimuli. The elevated levels of Zn<small><sup>2+</sup></small> and H<small><sub>2</sub></small>O<small><sub>2</sub></small> also inhibited adenosine triphosphate (ATP) generation from glycolysis and mitochondrial respiration to disrupt energy adaptability. Furthermore, insufficient ATP supply could reduce glutathione and heat shock protein expression, thereby sensitizing oxidative stress and enabling PDA-mediated mild photothermal therapy (PTT). Consequently, this trinity nanoplatform, which integrated dual-starvation therapy, amplified oxidative stress, and mild PTT, demonstrated outstanding therapeutic effects and a facile strategy.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" 6\",\"pages\":\" 1002-1012\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00070f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00070f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Polydopamine-encapsulated zinc peroxide nanoparticles to target the metabolism-redox circuit against tumor adaptability for mild photothermal therapy†
Regulating the metabolism-redox circuit of cancer cells has emerged as an attractive strategy to improve the therapeutic outcome, while often confronting the glaring issue of resistance due to the multiple adaptive responses of tumor cells. This study presents a simple yet efficient approach to regulate this circuit simultaneously against tumor adaptability by utilizing polydopamine-encapsulated zinc peroxide nanoparticles (ZnO2@PDA NPs). The nanoparticles could deliver large amounts of Zn2+ and H2O2 into tumor cells to unfold an intracellular self-amplifying loop for breaking the balance in zinc and redox homeostasis by H2O2-mediated endogenous Zn2+ release from metallothioneins due to its oxidation by H2O2 and Zn2+-induced in situ H2O2 production by disturbing mitochondrial respiration, ultimately disrupting tumor adaptability to exogenous stimuli. The elevated levels of Zn2+ and H2O2 also inhibited adenosine triphosphate (ATP) generation from glycolysis and mitochondrial respiration to disrupt energy adaptability. Furthermore, insufficient ATP supply could reduce glutathione and heat shock protein expression, thereby sensitizing oxidative stress and enabling PDA-mediated mild photothermal therapy (PTT). Consequently, this trinity nanoplatform, which integrated dual-starvation therapy, amplified oxidative stress, and mild PTT, demonstrated outstanding therapeutic effects and a facile strategy.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.