成人环境促进人类 iPSC 衍生肌肉移植物的转录成熟

IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING
Sarah B. Crist, Karim Azzag, James Kiley, Ilsa Coleman, Alessandro Magli, Rita C. R. Perlingeiro
{"title":"成人环境促进人类 iPSC 衍生肌肉移植物的转录成熟","authors":"Sarah B. Crist, Karim Azzag, James Kiley, Ilsa Coleman, Alessandro Magli, Rita C. R. Perlingeiro","doi":"10.1038/s41536-024-00360-4","DOIUrl":null,"url":null,"abstract":"<p>Pluripotent stem cell (PSC)-based cell therapy is an attractive option for the treatment of multiple human disorders, including muscular dystrophies. While in vitro differentiating PSCs can generate large numbers of human lineage-specific tissue, multiple studies evidenced that these cell populations mostly display embryonic/fetal features. We previously demonstrated that transplantation of PSC-derived myogenic progenitors provides long-term engraftment and functional improvement in several dystrophic mouse models, but it remained unknown whether donor-derived myofibers mature to match adult tissue. Here, we transplanted iPAX7 myogenic progenitors into muscles of non-dystrophic and dystrophic mice and compared the transcriptional landscape of human grafts with respective in vitro-differentiated iPAX7 myotubes as well as human skeletal muscle biospecimens. Pairing bulk RNA sequencing with computational deconvolution of human reads, we were able to pinpoint key myogenic changes that occur during the in vitro–to–in vivo transition, confirm developmental maturity, and consequently evaluate their applicability for cell-based therapies.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"105 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The adult environment promotes the transcriptional maturation of human iPSC-derived muscle grafts\",\"authors\":\"Sarah B. Crist, Karim Azzag, James Kiley, Ilsa Coleman, Alessandro Magli, Rita C. R. Perlingeiro\",\"doi\":\"10.1038/s41536-024-00360-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pluripotent stem cell (PSC)-based cell therapy is an attractive option for the treatment of multiple human disorders, including muscular dystrophies. While in vitro differentiating PSCs can generate large numbers of human lineage-specific tissue, multiple studies evidenced that these cell populations mostly display embryonic/fetal features. We previously demonstrated that transplantation of PSC-derived myogenic progenitors provides long-term engraftment and functional improvement in several dystrophic mouse models, but it remained unknown whether donor-derived myofibers mature to match adult tissue. Here, we transplanted iPAX7 myogenic progenitors into muscles of non-dystrophic and dystrophic mice and compared the transcriptional landscape of human grafts with respective in vitro-differentiated iPAX7 myotubes as well as human skeletal muscle biospecimens. Pairing bulk RNA sequencing with computational deconvolution of human reads, we were able to pinpoint key myogenic changes that occur during the in vitro–to–in vivo transition, confirm developmental maturity, and consequently evaluate their applicability for cell-based therapies.</p>\",\"PeriodicalId\":54236,\"journal\":{\"name\":\"npj Regenerative Medicine\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Regenerative Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41536-024-00360-4\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Regenerative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41536-024-00360-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

以多能干细胞(PSC)为基础的细胞疗法是治疗包括肌肉萎缩症在内的多种人类疾病的一种极具吸引力的选择。虽然体外分化的多能干细胞能产生大量的人系特异性组织,但多项研究证明,这些细胞群大多显示出胚胎/胎儿特征。我们以前曾证实,移植来源于造血干细胞的肌原祖细胞可在几种肌营养不良小鼠模型中提供长期的移植和功能改善,但供体来源的肌纤维是否成熟到与成人组织相匹配仍是未知数。在这里,我们将 iPAX7 肌原细胞移植到非肌营养不良小鼠和肌营养不良小鼠的肌肉中,并比较了人类移植物与各自体外分化的 iPAX7 肌管以及人类骨骼肌生物样本的转录情况。通过将大量 RNA 测序与人类读数的计算解卷积配对,我们能够确定体外到体内转变过程中发生的关键肌生成变化,确认发育成熟度,从而评估它们对细胞疗法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The adult environment promotes the transcriptional maturation of human iPSC-derived muscle grafts

Pluripotent stem cell (PSC)-based cell therapy is an attractive option for the treatment of multiple human disorders, including muscular dystrophies. While in vitro differentiating PSCs can generate large numbers of human lineage-specific tissue, multiple studies evidenced that these cell populations mostly display embryonic/fetal features. We previously demonstrated that transplantation of PSC-derived myogenic progenitors provides long-term engraftment and functional improvement in several dystrophic mouse models, but it remained unknown whether donor-derived myofibers mature to match adult tissue. Here, we transplanted iPAX7 myogenic progenitors into muscles of non-dystrophic and dystrophic mice and compared the transcriptional landscape of human grafts with respective in vitro-differentiated iPAX7 myotubes as well as human skeletal muscle biospecimens. Pairing bulk RNA sequencing with computational deconvolution of human reads, we were able to pinpoint key myogenic changes that occur during the in vitro–to–in vivo transition, confirm developmental maturity, and consequently evaluate their applicability for cell-based therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Regenerative Medicine
npj Regenerative Medicine Engineering-Biomedical Engineering
CiteScore
10.00
自引率
1.40%
发文量
71
审稿时长
12 weeks
期刊介绍: Regenerative Medicine, an innovative online-only journal, aims to advance research in the field of repairing and regenerating damaged tissues and organs within the human body. As a part of the prestigious Nature Partner Journals series and in partnership with ARMI, this high-quality, open access journal serves as a platform for scientists to explore effective therapies that harness the body's natural regenerative capabilities. With a focus on understanding the fundamental mechanisms of tissue damage and regeneration, npj Regenerative Medicine actively encourages studies that bridge the gap between basic research and clinical tissue repair strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信