单临界多项式和容量的典型高度下限

IF 1.2 2区 数学 Q1 MATHEMATICS
P. Habegger, H. Schmidt
{"title":"单临界多项式和容量的典型高度下限","authors":"P. Habegger, H. Schmidt","doi":"10.1017/fms.2023.112","DOIUrl":null,"url":null,"abstract":"<p>In a recent breakthrough, Dimitrov [Dim] solved the Schinzel–Zassenhaus conjecture. We follow his approach and adapt it to certain dynamical systems arising from polynomials of the form <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328033452511-0843:S2050509423001123:S2050509423001123_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$T^p+c$</span></span></img></span></span>, where <span>p</span> is a prime number and where the orbit of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328033452511-0843:S2050509423001123:S2050509423001123_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$0$</span></span></img></span></span> is finite. For example, if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328033452511-0843:S2050509423001123:S2050509423001123_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$p=2$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328033452511-0843:S2050509423001123:S2050509423001123_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$0$</span></span></img></span></span> is periodic under <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328033452511-0843:S2050509423001123:S2050509423001123_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$T^2+c$</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328033452511-0843:S2050509423001123:S2050509423001123_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$c\\in \\mathbb {R}$</span></span></img></span></span>, we prove a lower bound for the local canonical height of a wandering algebraic integer that is inversely proportional to the field degree. From this, we are able to deduce a lower bound for the canonical height of a wandering point that decays like the inverse square of the field degree. For these <span>f</span>, our method has application to the irreducibility of polynomials. Indeed, say <span>y</span> is preperiodic under <span>f</span> but not periodic. Then any iteration of <span>f</span> minus <span>y</span> is irreducible in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328033452511-0843:S2050509423001123:S2050509423001123_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Q}(y)[T]$</span></span></img></span></span>.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower Bounds for the Canonical Height of a Unicritical Polynomial and Capacity\",\"authors\":\"P. Habegger, H. Schmidt\",\"doi\":\"10.1017/fms.2023.112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In a recent breakthrough, Dimitrov [Dim] solved the Schinzel–Zassenhaus conjecture. We follow his approach and adapt it to certain dynamical systems arising from polynomials of the form <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328033452511-0843:S2050509423001123:S2050509423001123_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$T^p+c$</span></span></img></span></span>, where <span>p</span> is a prime number and where the orbit of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328033452511-0843:S2050509423001123:S2050509423001123_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$0$</span></span></img></span></span> is finite. For example, if <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328033452511-0843:S2050509423001123:S2050509423001123_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p=2$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328033452511-0843:S2050509423001123:S2050509423001123_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$0$</span></span></img></span></span> is periodic under <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328033452511-0843:S2050509423001123:S2050509423001123_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$T^2+c$</span></span></img></span></span> with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328033452511-0843:S2050509423001123:S2050509423001123_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$c\\\\in \\\\mathbb {R}$</span></span></img></span></span>, we prove a lower bound for the local canonical height of a wandering algebraic integer that is inversely proportional to the field degree. From this, we are able to deduce a lower bound for the canonical height of a wandering point that decays like the inverse square of the field degree. For these <span>f</span>, our method has application to the irreducibility of polynomials. Indeed, say <span>y</span> is preperiodic under <span>f</span> but not periodic. Then any iteration of <span>f</span> minus <span>y</span> is irreducible in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328033452511-0843:S2050509423001123:S2050509423001123_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Q}(y)[T]$</span></span></img></span></span>.</p>\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2023.112\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.112","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

迪米特洛夫[Dim]在最近的一次突破中解决了辛泽尔-扎森豪斯猜想。我们沿用他的方法,并将其应用于由 $T^p+c$ 形式的多项式产生的某些动力系统,其中 p 是素数,且 $0$ 的轨道是有限的。例如,如果 $p=2$ 和 $0$ 在 $c\in \mathbb {R}$ 的 $T^2+c$ 下是周期性的,我们证明了一个游走代数整数的局部规范高度的下限,它与场度成反比。由此,我们可以推导出一个徘徊点的规范高度的下界,它的衰减与场程度的平方成反比。对于这些 f,我们的方法适用于多项式的不可还原性。事实上,假设 y 在 f 下是前周期性的,但不是周期性的。那么 f 减 y 的任何迭代在 $\mathbb {Q}(y)[T]$ 中都是不可约的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower Bounds for the Canonical Height of a Unicritical Polynomial and Capacity

In a recent breakthrough, Dimitrov [Dim] solved the Schinzel–Zassenhaus conjecture. We follow his approach and adapt it to certain dynamical systems arising from polynomials of the form $T^p+c$, where p is a prime number and where the orbit of $0$ is finite. For example, if $p=2$ and $0$ is periodic under $T^2+c$ with $c\in \mathbb {R}$, we prove a lower bound for the local canonical height of a wandering algebraic integer that is inversely proportional to the field degree. From this, we are able to deduce a lower bound for the canonical height of a wandering point that decays like the inverse square of the field degree. For these f, our method has application to the irreducibility of polynomials. Indeed, say y is preperiodic under f but not periodic. Then any iteration of f minus y is irreducible in $\mathbb {Q}(y)[T]$.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信