Soham Roy, Spencer K. Millican, Vishwani D. Agrawal
{"title":"概览与最新进展:电子测试中的机器智能","authors":"Soham Roy, Spencer K. Millican, Vishwani D. Agrawal","doi":"10.1007/s10836-024-06117-7","DOIUrl":null,"url":null,"abstract":"<p>Integrated circuit (IC) testing presents complex problems that for large circuits are exceptionally difficult to solve by traditional computing techniques. To deal with unmanageable time complexity, engineers often rely on human “hunches\" and “heuristics\" learned through experience. Training computers to adopt these human skills is referred to as machine intelligence (MI) or machine learning (ML). This survey examines applications of such methods to test analog, radio frequency (RF), digital, and memory circuits. It also summarizes ML applications to hardware security and emerging technologies, highlighting challenges and potential research directions. The present work is an extension of a recent paper from IEEE VLSI Test Symposium (VTS’21), and includes recent applications of artificial neural network (ANN) and principal component analysis (PCA) to automatic test pattern generation (ATPG).</p>","PeriodicalId":501485,"journal":{"name":"Journal of Electronic Testing","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey and Recent Advances: Machine Intelligence in Electronic Testing\",\"authors\":\"Soham Roy, Spencer K. Millican, Vishwani D. Agrawal\",\"doi\":\"10.1007/s10836-024-06117-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Integrated circuit (IC) testing presents complex problems that for large circuits are exceptionally difficult to solve by traditional computing techniques. To deal with unmanageable time complexity, engineers often rely on human “hunches\\\" and “heuristics\\\" learned through experience. Training computers to adopt these human skills is referred to as machine intelligence (MI) or machine learning (ML). This survey examines applications of such methods to test analog, radio frequency (RF), digital, and memory circuits. It also summarizes ML applications to hardware security and emerging technologies, highlighting challenges and potential research directions. The present work is an extension of a recent paper from IEEE VLSI Test Symposium (VTS’21), and includes recent applications of artificial neural network (ANN) and principal component analysis (PCA) to automatic test pattern generation (ATPG).</p>\",\"PeriodicalId\":501485,\"journal\":{\"name\":\"Journal of Electronic Testing\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Testing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10836-024-06117-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10836-024-06117-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Survey and Recent Advances: Machine Intelligence in Electronic Testing
Integrated circuit (IC) testing presents complex problems that for large circuits are exceptionally difficult to solve by traditional computing techniques. To deal with unmanageable time complexity, engineers often rely on human “hunches" and “heuristics" learned through experience. Training computers to adopt these human skills is referred to as machine intelligence (MI) or machine learning (ML). This survey examines applications of such methods to test analog, radio frequency (RF), digital, and memory circuits. It also summarizes ML applications to hardware security and emerging technologies, highlighting challenges and potential research directions. The present work is an extension of a recent paper from IEEE VLSI Test Symposium (VTS’21), and includes recent applications of artificial neural network (ANN) and principal component analysis (PCA) to automatic test pattern generation (ATPG).