准还原谎言上代数和量子对称对的惠特克范畴

IF 1.2 2区 数学 Q1 MATHEMATICS
Chih-Whi Chen, Shun-Jen Cheng
{"title":"准还原谎言上代数和量子对称对的惠特克范畴","authors":"Chih-Whi Chen, Shun-Jen Cheng","doi":"10.1017/fms.2024.17","DOIUrl":null,"url":null,"abstract":"<p>We show that, for an arbitrary finite-dimensional quasi-reductive Lie superalgebra over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb {C}}$</span></span></img></span></span> with a triangular decomposition and a character <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\zeta $</span></span></img></span></span> of the nilpotent radical, the associated Backelin functor <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\Gamma _\\zeta $</span></span></img></span></span> sends Verma modules to standard Whittaker modules provided the latter exist. As a consequence, this gives a complete solution to the problem of determining the composition factors of the standard Whittaker modules in terms of composition factors of Verma modules in the category <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal {O}}$</span></span></img></span></span>. In the case of the ortho-symplectic Lie superalgebras, we show that the Backelin functor <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\Gamma _\\zeta $</span></span></img></span></span> and its target category, respectively, categorify a <span>q</span>-symmetrizing map and the corresponding <span>q</span>-symmetrized Fock space associated with a quasi-split quantum symmetric pair of type <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$AIII$</span></span></img></span></span>.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whittaker categories of quasi-reductive lie superalgebras and quantum symmetric pairs\",\"authors\":\"Chih-Whi Chen, Shun-Jen Cheng\",\"doi\":\"10.1017/fms.2024.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that, for an arbitrary finite-dimensional quasi-reductive Lie superalgebra over <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb {C}}$</span></span></img></span></span> with a triangular decomposition and a character <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\zeta $</span></span></img></span></span> of the nilpotent radical, the associated Backelin functor <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Gamma _\\\\zeta $</span></span></img></span></span> sends Verma modules to standard Whittaker modules provided the latter exist. As a consequence, this gives a complete solution to the problem of determining the composition factors of the standard Whittaker modules in terms of composition factors of Verma modules in the category <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal {O}}$</span></span></img></span></span>. In the case of the ortho-symplectic Lie superalgebras, we show that the Backelin functor <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Gamma _\\\\zeta $</span></span></img></span></span> and its target category, respectively, categorify a <span>q</span>-symmetrizing map and the corresponding <span>q</span>-symmetrized Fock space associated with a quasi-split quantum symmetric pair of type <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$AIII$</span></span></img></span></span>.</p>\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.17\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.17","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于任意有限维准还原Lie上代数${mathbb {C}}$,只要存在三角分解和零势根的character $\zeta$,相关的Backelin函子$\Gamma _\zeta $就会把Verma模块发送到标准惠特克模块。因此,这就给出了一个完整的解决方案,即在范畴 ${mathcal {O}}$ 中用 Verma 模块的组成因子来确定标准惠特克模块的组成因子。在正交折射李超群的情况下,我们证明了巴克林函子 $\Gamma _\zeta $ 及其目标范畴分别分类了一个 q 对称映射和与 $AIII$ 类型的准分裂量子对称对相关的相应 q 对称福克空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Whittaker categories of quasi-reductive lie superalgebras and quantum symmetric pairs

We show that, for an arbitrary finite-dimensional quasi-reductive Lie superalgebra over ${\mathbb {C}}$ with a triangular decomposition and a character $\zeta $ of the nilpotent radical, the associated Backelin functor $\Gamma _\zeta $ sends Verma modules to standard Whittaker modules provided the latter exist. As a consequence, this gives a complete solution to the problem of determining the composition factors of the standard Whittaker modules in terms of composition factors of Verma modules in the category ${\mathcal {O}}$. In the case of the ortho-symplectic Lie superalgebras, we show that the Backelin functor $\Gamma _\zeta $ and its target category, respectively, categorify a q-symmetrizing map and the corresponding q-symmetrized Fock space associated with a quasi-split quantum symmetric pair of type $AIII$.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信