{"title":"准还原谎言上代数和量子对称对的惠特克范畴","authors":"Chih-Whi Chen, Shun-Jen Cheng","doi":"10.1017/fms.2024.17","DOIUrl":null,"url":null,"abstract":"<p>We show that, for an arbitrary finite-dimensional quasi-reductive Lie superalgebra over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb {C}}$</span></span></img></span></span> with a triangular decomposition and a character <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\zeta $</span></span></img></span></span> of the nilpotent radical, the associated Backelin functor <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\Gamma _\\zeta $</span></span></img></span></span> sends Verma modules to standard Whittaker modules provided the latter exist. As a consequence, this gives a complete solution to the problem of determining the composition factors of the standard Whittaker modules in terms of composition factors of Verma modules in the category <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal {O}}$</span></span></img></span></span>. In the case of the ortho-symplectic Lie superalgebras, we show that the Backelin functor <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\Gamma _\\zeta $</span></span></img></span></span> and its target category, respectively, categorify a <span>q</span>-symmetrizing map and the corresponding <span>q</span>-symmetrized Fock space associated with a quasi-split quantum symmetric pair of type <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$AIII$</span></span></img></span></span>.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whittaker categories of quasi-reductive lie superalgebras and quantum symmetric pairs\",\"authors\":\"Chih-Whi Chen, Shun-Jen Cheng\",\"doi\":\"10.1017/fms.2024.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that, for an arbitrary finite-dimensional quasi-reductive Lie superalgebra over <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb {C}}$</span></span></img></span></span> with a triangular decomposition and a character <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\zeta $</span></span></img></span></span> of the nilpotent radical, the associated Backelin functor <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Gamma _\\\\zeta $</span></span></img></span></span> sends Verma modules to standard Whittaker modules provided the latter exist. As a consequence, this gives a complete solution to the problem of determining the composition factors of the standard Whittaker modules in terms of composition factors of Verma modules in the category <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal {O}}$</span></span></img></span></span>. In the case of the ortho-symplectic Lie superalgebras, we show that the Backelin functor <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Gamma _\\\\zeta $</span></span></img></span></span> and its target category, respectively, categorify a <span>q</span>-symmetrizing map and the corresponding <span>q</span>-symmetrized Fock space associated with a quasi-split quantum symmetric pair of type <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327170422340-0203:S2050509424000173:S2050509424000173_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$AIII$</span></span></img></span></span>.</p>\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.17\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.17","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Whittaker categories of quasi-reductive lie superalgebras and quantum symmetric pairs
We show that, for an arbitrary finite-dimensional quasi-reductive Lie superalgebra over ${\mathbb {C}}$ with a triangular decomposition and a character $\zeta $ of the nilpotent radical, the associated Backelin functor $\Gamma _\zeta $ sends Verma modules to standard Whittaker modules provided the latter exist. As a consequence, this gives a complete solution to the problem of determining the composition factors of the standard Whittaker modules in terms of composition factors of Verma modules in the category ${\mathcal {O}}$. In the case of the ortho-symplectic Lie superalgebras, we show that the Backelin functor $\Gamma _\zeta $ and its target category, respectively, categorify a q-symmetrizing map and the corresponding q-symmetrized Fock space associated with a quasi-split quantum symmetric pair of type $AIII$.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.