{"title":"在太空探索中驾驭 3D 打印个性化医疗的挑战:全面回顾","authors":"PRAKASH KATAKAM, Madhavi Lakshmi Ratna Bhavaraju, Tanniru Venkata Narayana, Koushik Bhandari, Nagarajan Sriram, Vidya Sagar Sisinty, Shanta Kumari Adiki","doi":"10.1615/critrevtherdrugcarriersyst.2024051126","DOIUrl":null,"url":null,"abstract":"Space exploration has undergone a paradigm shift in recent years, with a growing emphasis on long-duration missions and human habitation on other celestial bodies. Private aerospace businesses are at the forefront of advancing the next iteration of spacecraft, encompassing a wide range of applications such as deep space exploration (e.g., SpaceX) and cost-effective satellite deployments (e.g., Rocketlab). One of the critical challenges associated with prolonged space missions is the provision of personalized medical care. 3D printing technology has emerged as a potential solution, enabling the on-demand production of personalized medical devices and medications. However, the unique conditions of space pose substantial challenges to the successful implementation of 3D printing for personalized medicine. Tremendous scope for research exists in terms of resource utilization and waste management in space ecosystem, robotic and AI enabled tool utilization, remote operability, interplanetary travel, space education and training tools, digital twins, space tourism and in many other aspects of 3D printing for personalized medicine in space explorations.","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"27 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Navigating the Challenges of 3D Printing Personalized Medicine in Space Explorations: A Comprehensive Review\",\"authors\":\"PRAKASH KATAKAM, Madhavi Lakshmi Ratna Bhavaraju, Tanniru Venkata Narayana, Koushik Bhandari, Nagarajan Sriram, Vidya Sagar Sisinty, Shanta Kumari Adiki\",\"doi\":\"10.1615/critrevtherdrugcarriersyst.2024051126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Space exploration has undergone a paradigm shift in recent years, with a growing emphasis on long-duration missions and human habitation on other celestial bodies. Private aerospace businesses are at the forefront of advancing the next iteration of spacecraft, encompassing a wide range of applications such as deep space exploration (e.g., SpaceX) and cost-effective satellite deployments (e.g., Rocketlab). One of the critical challenges associated with prolonged space missions is the provision of personalized medical care. 3D printing technology has emerged as a potential solution, enabling the on-demand production of personalized medical devices and medications. However, the unique conditions of space pose substantial challenges to the successful implementation of 3D printing for personalized medicine. Tremendous scope for research exists in terms of resource utilization and waste management in space ecosystem, robotic and AI enabled tool utilization, remote operability, interplanetary travel, space education and training tools, digital twins, space tourism and in many other aspects of 3D printing for personalized medicine in space explorations.\",\"PeriodicalId\":50614,\"journal\":{\"name\":\"Critical Reviews in Therapeutic Drug Carrier Systems\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Therapeutic Drug Carrier Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1615/critrevtherdrugcarriersyst.2024051126\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Therapeutic Drug Carrier Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/critrevtherdrugcarriersyst.2024051126","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
近年来,太空探索的模式发生了转变,越来越强调长期飞行任务和人类在其他天体上的居住。私营航空航天企业走在推进下一代航天器的最前沿,包括深空探索(如 SpaceX)和具有成本效益的卫星部署(如 Rocketlab)等广泛应用。与长期太空任务相关的关键挑战之一是提供个性化医疗服务。三维打印技术已成为一种潜在的解决方案,可按需生产个性化医疗设备和药物。然而,独特的太空条件对成功实施个性化医疗 3D 打印技术构成了巨大挑战。在太空生态系统的资源利用和废物管理、机器人和人工智能工具的利用、远程可操作性、星际旅行、太空教育和培训工具、数字双胞胎、太空旅游以及 3D 打印用于太空探索中的个性化医疗的许多其他方面,都存在巨大的研究空间。
Navigating the Challenges of 3D Printing Personalized Medicine in Space Explorations: A Comprehensive Review
Space exploration has undergone a paradigm shift in recent years, with a growing emphasis on long-duration missions and human habitation on other celestial bodies. Private aerospace businesses are at the forefront of advancing the next iteration of spacecraft, encompassing a wide range of applications such as deep space exploration (e.g., SpaceX) and cost-effective satellite deployments (e.g., Rocketlab). One of the critical challenges associated with prolonged space missions is the provision of personalized medical care. 3D printing technology has emerged as a potential solution, enabling the on-demand production of personalized medical devices and medications. However, the unique conditions of space pose substantial challenges to the successful implementation of 3D printing for personalized medicine. Tremendous scope for research exists in terms of resource utilization and waste management in space ecosystem, robotic and AI enabled tool utilization, remote operability, interplanetary travel, space education and training tools, digital twins, space tourism and in many other aspects of 3D printing for personalized medicine in space explorations.
期刊介绍:
Therapeutic uses of a variety of drug carrier systems have significant impact on the treatment and potential cure of many chronic diseases, including cancer, diabetes mellitus, psoriasis, parkinsons, Alzheimer, rheumatoid arthritis, HIV infection, infectious diseases, asthma, and drug addiction. Scientific efforts in these areas are multidisciplinary, involving the physical, biological, medical, pharmaceutical, biological materials, and engineering fields.
Articles concerning this field appear in a wide variety of journals. With the vast increase in the number of articles and the tendency to fragment science, it becomes increasingly difficult to keep abreast of the literature and to sort out and evaluate the importance and reliability of the data, especially when proprietary considerations are involved. Abstracts and noncritical articles often do not provide a sufficiently reliable basis for proper assessment of a given field without the additional perusal of the original literature. This journal bridges this gap by publishing authoritative, objective, comprehensive multidisciplinary critical review papers with emphasis on formulation and delivery systems. Both invited and contributed articles are subject to peer review.