Chung-Yuan Chang, Yen-Wei Feng, Tejender Singh Rawat, Shih-Wei Chen, Albert Shihchun Lin
{"title":"基于贝叶斯强化学习的激光退火参数优化","authors":"Chung-Yuan Chang, Yen-Wei Feng, Tejender Singh Rawat, Shih-Wei Chen, Albert Shihchun Lin","doi":"10.1007/s10845-024-02363-w","DOIUrl":null,"url":null,"abstract":"<p>Developing new semiconductor processes consumes tremendous time and cost. Therefore, we applied Bayesian reinforcement learning (BRL) with the assistance of technology computer-aided design (TCAD). The fixed or variable prior BRL is tested where the TCAD prior is fixed or is changed by the experimental sampling and decays during the entire RL procedure. The sheet resistance (<i>R</i><sub>s</sub>) of the samples treated by laser annealing is the optimization target. In both cases, the experimentally sampled data points are added to the training dataset to enhance the RL agent. The model-based experimental agent and a model-free TCAD Q-Table are used in this study. The results of BRL proved that it can achieve lower R<sub>s</sub> minimum values and variances at different hyperparameter settings. Besides, two action types, i.e., point to state and increment of levels, are proven to have similar results, which implies the method used in this study is insensitive to the different action types.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"17 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of laser annealing parameters based on bayesian reinforcement learning\",\"authors\":\"Chung-Yuan Chang, Yen-Wei Feng, Tejender Singh Rawat, Shih-Wei Chen, Albert Shihchun Lin\",\"doi\":\"10.1007/s10845-024-02363-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Developing new semiconductor processes consumes tremendous time and cost. Therefore, we applied Bayesian reinforcement learning (BRL) with the assistance of technology computer-aided design (TCAD). The fixed or variable prior BRL is tested where the TCAD prior is fixed or is changed by the experimental sampling and decays during the entire RL procedure. The sheet resistance (<i>R</i><sub>s</sub>) of the samples treated by laser annealing is the optimization target. In both cases, the experimentally sampled data points are added to the training dataset to enhance the RL agent. The model-based experimental agent and a model-free TCAD Q-Table are used in this study. The results of BRL proved that it can achieve lower R<sub>s</sub> minimum values and variances at different hyperparameter settings. Besides, two action types, i.e., point to state and increment of levels, are proven to have similar results, which implies the method used in this study is insensitive to the different action types.</p>\",\"PeriodicalId\":16193,\"journal\":{\"name\":\"Journal of Intelligent Manufacturing\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10845-024-02363-w\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02363-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Optimization of laser annealing parameters based on bayesian reinforcement learning
Developing new semiconductor processes consumes tremendous time and cost. Therefore, we applied Bayesian reinforcement learning (BRL) with the assistance of technology computer-aided design (TCAD). The fixed or variable prior BRL is tested where the TCAD prior is fixed or is changed by the experimental sampling and decays during the entire RL procedure. The sheet resistance (Rs) of the samples treated by laser annealing is the optimization target. In both cases, the experimentally sampled data points are added to the training dataset to enhance the RL agent. The model-based experimental agent and a model-free TCAD Q-Table are used in this study. The results of BRL proved that it can achieve lower Rs minimum values and variances at different hyperparameter settings. Besides, two action types, i.e., point to state and increment of levels, are proven to have similar results, which implies the method used in this study is insensitive to the different action types.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.