Na Wang, Chenxi Zhan, Junzhuo Li, Dan Liu, Junjie Xiong, Geshan Zhang, Yin-an Ming
{"title":"利用 FeOx/GAC 催化臭氧高效降解废水中的甲硝唑","authors":"Na Wang, Chenxi Zhan, Junzhuo Li, Dan Liu, Junjie Xiong, Geshan Zhang, Yin-an Ming","doi":"10.1007/s11243-024-00571-0","DOIUrl":null,"url":null,"abstract":"<div><p>To remove the metronidazole, the iron oxides loaded on granular activated carbon (FeO<sub>x</sub>-GAC) were prepared by the impregnation–calcination approach. The physicochemical properties of the catalysts were characterized by electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that FeO<sub>x</sub>-GAC has a porous structure, in which the iron oxides with a variety of valence states are smoothly attached on the activated carbon. The catalytic activity of FeO<sub>x</sub>-GAC was evaluated for metronidazole removal, exhibiting great catalytic efficiency of the catalyst. Besides, the catalytic ozonation of metronidazole was optimized by varying the dose of ozone and catalyst, as well as the pH of the solution.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient degradation of metronidazole in wastewater by FeOx/GAC catalytic ozonation\",\"authors\":\"Na Wang, Chenxi Zhan, Junzhuo Li, Dan Liu, Junjie Xiong, Geshan Zhang, Yin-an Ming\",\"doi\":\"10.1007/s11243-024-00571-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To remove the metronidazole, the iron oxides loaded on granular activated carbon (FeO<sub>x</sub>-GAC) were prepared by the impregnation–calcination approach. The physicochemical properties of the catalysts were characterized by electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that FeO<sub>x</sub>-GAC has a porous structure, in which the iron oxides with a variety of valence states are smoothly attached on the activated carbon. The catalytic activity of FeO<sub>x</sub>-GAC was evaluated for metronidazole removal, exhibiting great catalytic efficiency of the catalyst. Besides, the catalytic ozonation of metronidazole was optimized by varying the dose of ozone and catalyst, as well as the pH of the solution.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11243-024-00571-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11243-024-00571-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
为了去除甲硝唑,采用浸渍-煅烧法制备了负载在颗粒活性炭上的铁氧化物(FeOx-GAC)。催化剂的理化性质通过电子显微镜(SEM)、透射电子显微镜(TEM)、傅立叶变换红外光谱(FTIR)、X 射线衍射(XRD)和 X 射线光电子能谱(XPS)进行了表征。结果表明,FeOx-GAC 具有多孔结构,不同价态的铁氧化物平滑地附着在活性炭上。对 FeOx-GAC 去除甲硝唑的催化活性进行了评估,结果表明该催化剂具有很高的催化效率。此外,还通过改变臭氧和催化剂的剂量以及溶液的 pH 值优化了催化臭氧去除甲硝唑的效果。
Efficient degradation of metronidazole in wastewater by FeOx/GAC catalytic ozonation
To remove the metronidazole, the iron oxides loaded on granular activated carbon (FeOx-GAC) were prepared by the impregnation–calcination approach. The physicochemical properties of the catalysts were characterized by electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that FeOx-GAC has a porous structure, in which the iron oxides with a variety of valence states are smoothly attached on the activated carbon. The catalytic activity of FeOx-GAC was evaluated for metronidazole removal, exhibiting great catalytic efficiency of the catalyst. Besides, the catalytic ozonation of metronidazole was optimized by varying the dose of ozone and catalyst, as well as the pH of the solution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.