{"title":"神经肌肉障碍儿童咳嗽峰值流速与呼气峰值流速的比较","authors":"","doi":"10.1016/j.prrv.2024.04.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Spirometry and peak cough flow testing (PCF) are commonly used in the respiratory assessment of children with a </span>neuromuscular disorder (NMD). Testing uses two different machines, increases laboratory time, costs and resource utilisation. No studies have assessed the correlation between peak expiratory flow (PEF) obtained from spirometry and PCF in children with NMD using one device. An audit of children with a NMD managed at the Children’s Hospital at Westmead in 2022–2024 aged < 20 years who performed spirometry and PCF testing on the same device (Vyaire Body Box</span><sup>TM</sup>, Ultrasonic flow meter-based, or Vyaire Pneumotachograph<sup>TM</sup>, Pneumotach flow meter-based; Germany) was conducted to assess the correlation between PCF and PEF. Fifty-one sets of testing were identified, and 40 subjects (9F) had reproducible testing and were included. Median (range) age was 14.95 (7.20–19.00) years. Median PEF (L/min) was 4.05 (1.22–10.26) and median PCF (L/min) was 4.29 (1.69–10.82). PEF and PCF had a strong Pearson’s correlation coefficient, (R = 0.97, p = 0.03). The coefficient of determination was 0.93. If laboratory resources permit, spirometry should be the test of choice for children with NMD. On average, spirometry required multiple practices to achieve reproducibility to meet ATS/ERS standards. PCF testing can be utilised for children where performing technically acceptable spirometry is not possible.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparison of peak cough flow and peak expiratory flow in children with neuromuscular disorders\",\"authors\":\"\",\"doi\":\"10.1016/j.prrv.2024.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Spirometry and peak cough flow testing (PCF) are commonly used in the respiratory assessment of children with a </span>neuromuscular disorder (NMD). Testing uses two different machines, increases laboratory time, costs and resource utilisation. No studies have assessed the correlation between peak expiratory flow (PEF) obtained from spirometry and PCF in children with NMD using one device. An audit of children with a NMD managed at the Children’s Hospital at Westmead in 2022–2024 aged < 20 years who performed spirometry and PCF testing on the same device (Vyaire Body Box</span><sup>TM</sup>, Ultrasonic flow meter-based, or Vyaire Pneumotachograph<sup>TM</sup>, Pneumotach flow meter-based; Germany) was conducted to assess the correlation between PCF and PEF. Fifty-one sets of testing were identified, and 40 subjects (9F) had reproducible testing and were included. Median (range) age was 14.95 (7.20–19.00) years. Median PEF (L/min) was 4.05 (1.22–10.26) and median PCF (L/min) was 4.29 (1.69–10.82). PEF and PCF had a strong Pearson’s correlation coefficient, (R = 0.97, p = 0.03). The coefficient of determination was 0.93. If laboratory resources permit, spirometry should be the test of choice for children with NMD. On average, spirometry required multiple practices to achieve reproducibility to meet ATS/ERS standards. PCF testing can be utilised for children where performing technically acceptable spirometry is not possible.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1526054224000265\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526054224000265","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A comparison of peak cough flow and peak expiratory flow in children with neuromuscular disorders
Spirometry and peak cough flow testing (PCF) are commonly used in the respiratory assessment of children with a neuromuscular disorder (NMD). Testing uses two different machines, increases laboratory time, costs and resource utilisation. No studies have assessed the correlation between peak expiratory flow (PEF) obtained from spirometry and PCF in children with NMD using one device. An audit of children with a NMD managed at the Children’s Hospital at Westmead in 2022–2024 aged < 20 years who performed spirometry and PCF testing on the same device (Vyaire Body BoxTM, Ultrasonic flow meter-based, or Vyaire PneumotachographTM, Pneumotach flow meter-based; Germany) was conducted to assess the correlation between PCF and PEF. Fifty-one sets of testing were identified, and 40 subjects (9F) had reproducible testing and were included. Median (range) age was 14.95 (7.20–19.00) years. Median PEF (L/min) was 4.05 (1.22–10.26) and median PCF (L/min) was 4.29 (1.69–10.82). PEF and PCF had a strong Pearson’s correlation coefficient, (R = 0.97, p = 0.03). The coefficient of determination was 0.93. If laboratory resources permit, spirometry should be the test of choice for children with NMD. On average, spirometry required multiple practices to achieve reproducibility to meet ATS/ERS standards. PCF testing can be utilised for children where performing technically acceptable spirometry is not possible.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.