受主震-余震序列影响的钢筋混凝土框架结构的概率风险评估

IF 4.3 2区 工程技术 Q1 ENGINEERING, CIVIL
Zhou Zhou, Dagang Lu, Paolo Gardoni, Miao Han, Xiaohui Yu
{"title":"受主震-余震序列影响的钢筋混凝土框架结构的概率风险评估","authors":"Zhou Zhou,&nbsp;Dagang Lu,&nbsp;Paolo Gardoni,&nbsp;Miao Han,&nbsp;Xiaohui Yu","doi":"10.1002/eqe.4121","DOIUrl":null,"url":null,"abstract":"<p>Recent earthquakes have highlighted that aftershocks can considerably increase the structural demand and seismic risk of engineering structures. This study presents a probabilistic approach to assess the seismic risk of reinforced concrete (RC) frame structures subjected to mainshock-aftershock sequences. In this approach, a predictive fragility method is used to evaluate the probabilities of structural damage under sequential excitations. The Bayes theorem is employed to generate posterior distributions of unknown model parameters. Then, a practical seismic hazard assessment method is used to conduct mainshock-aftershock hazard analysis. The Copula technique is employed to develop a joint distribution model of the mainshock and aftershock intensity measures. Finally, the seismic risk is evaluated using the classical risk integration equation with the mainshock-aftershock fragilities and hazard surfaces. Confidence bounds for fragilities and seismic risks are also obtained to account for the uncertainties of model parameters caused by aftershocks. The proposed approach is demonstrated by considering a seismic-designed RC frame building. It can be concluded that aftershocks can significantly increase the seismic risk throughout the entire structural service life. The additional uncertainties caused by aftershocks result in wider confidence bounds for seismic risk.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic risk assessment for reinforced concrete frame structures subject to mainshock-aftershock sequences\",\"authors\":\"Zhou Zhou,&nbsp;Dagang Lu,&nbsp;Paolo Gardoni,&nbsp;Miao Han,&nbsp;Xiaohui Yu\",\"doi\":\"10.1002/eqe.4121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent earthquakes have highlighted that aftershocks can considerably increase the structural demand and seismic risk of engineering structures. This study presents a probabilistic approach to assess the seismic risk of reinforced concrete (RC) frame structures subjected to mainshock-aftershock sequences. In this approach, a predictive fragility method is used to evaluate the probabilities of structural damage under sequential excitations. The Bayes theorem is employed to generate posterior distributions of unknown model parameters. Then, a practical seismic hazard assessment method is used to conduct mainshock-aftershock hazard analysis. The Copula technique is employed to develop a joint distribution model of the mainshock and aftershock intensity measures. Finally, the seismic risk is evaluated using the classical risk integration equation with the mainshock-aftershock fragilities and hazard surfaces. Confidence bounds for fragilities and seismic risks are also obtained to account for the uncertainties of model parameters caused by aftershocks. The proposed approach is demonstrated by considering a seismic-designed RC frame building. It can be concluded that aftershocks can significantly increase the seismic risk throughout the entire structural service life. The additional uncertainties caused by aftershocks result in wider confidence bounds for seismic risk.</p>\",\"PeriodicalId\":11390,\"journal\":{\"name\":\"Earthquake Engineering & Structural Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Engineering & Structural Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4121\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4121","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

最近发生的地震表明,余震会大大增加工程结构的结构要求和地震风险。本研究提出了一种概率方法,用于评估钢筋混凝土(RC)框架结构在主震-余震序列下的地震风险。在该方法中,使用了预测脆性方法来评估连续激励下结构损坏的概率。贝叶斯定理用于生成未知模型参数的后验分布。然后,采用实用的地震危害评估方法进行主震-余震危害分析。采用 Copula 技术建立主震和余震烈度测量的联合分布模型。最后,使用经典的风险整合方程,结合主震-余震脆度和危险面,对地震风险进行评估。同时,考虑到余震造成的模型参数不确定性,还得出了脆度和地震风险的置信区间。通过考虑抗震设计的 RC 框架建筑,演示了所提出的方法。可以得出结论,余震会显著增加整个结构使用寿命期间的地震风险。余震造成的额外不确定性导致地震风险的置信区间更宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic risk assessment for reinforced concrete frame structures subject to mainshock-aftershock sequences

Recent earthquakes have highlighted that aftershocks can considerably increase the structural demand and seismic risk of engineering structures. This study presents a probabilistic approach to assess the seismic risk of reinforced concrete (RC) frame structures subjected to mainshock-aftershock sequences. In this approach, a predictive fragility method is used to evaluate the probabilities of structural damage under sequential excitations. The Bayes theorem is employed to generate posterior distributions of unknown model parameters. Then, a practical seismic hazard assessment method is used to conduct mainshock-aftershock hazard analysis. The Copula technique is employed to develop a joint distribution model of the mainshock and aftershock intensity measures. Finally, the seismic risk is evaluated using the classical risk integration equation with the mainshock-aftershock fragilities and hazard surfaces. Confidence bounds for fragilities and seismic risks are also obtained to account for the uncertainties of model parameters caused by aftershocks. The proposed approach is demonstrated by considering a seismic-designed RC frame building. It can be concluded that aftershocks can significantly increase the seismic risk throughout the entire structural service life. The additional uncertainties caused by aftershocks result in wider confidence bounds for seismic risk.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earthquake Engineering & Structural Dynamics
Earthquake Engineering & Structural Dynamics 工程技术-工程:地质
CiteScore
7.20
自引率
13.30%
发文量
180
审稿时长
4.8 months
期刊介绍: Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following: ground motions for analysis and design geotechnical earthquake engineering probabilistic and deterministic methods of dynamic analysis experimental behaviour of structures seismic protective systems system identification risk assessment seismic code requirements methods for earthquake-resistant design and retrofit of structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信