Jeremy R. Conrad, Ken W. Krauss, Brian W. Benscoter, Ilka C. Feller, Nicole Cormier, Darren J. Johnson
{"title":"富营养化使潮汐红树林地表海拔变化潜能饱和","authors":"Jeremy R. Conrad, Ken W. Krauss, Brian W. Benscoter, Ilka C. Feller, Nicole Cormier, Darren J. Johnson","doi":"10.1007/s12237-024-01353-8","DOIUrl":null,"url":null,"abstract":"<p>Coastal mangrove forests are at risk of being submerged due to sea-level rise (SLR). However, mangroves have persisted with changing sea levels due to a variety of biotic and physical feedback mechanisms that allow them to gain and maintain relative soil surface elevation. Therefore, mangrove’s resilience to SLR is dependent upon their ability to build soil elevation at a rate that tracks with SLR, or well-enough to migrate inland. Anthropogenic disturbances, such as altered hydrology and eutrophication, can degrade mangrove forest health and compromise this land building process, placing mangroves at greater risk. Much of Florida’s mangroves are adjacent to highly urbanized areas that produce nutrient-loaded runoff. This study assesses how experimental nutrient inputs in the eutrophic Caloosahatchee Estuary influence the soil surface elevation change (SEC) in two distinct mangrove zones. Annual rates of SEC were reduced by phosphorus additions and differed by mangrove zone, ranging from 0.67 ± 0.59 to 2.13 ± 0.61 and 4.21 ± 0.58 to 6.39 ± 0.59 mm year<sup>−1</sup> in the fringe and basin zone, respectively. This suggests that eutrophication can reduce the maximum potential SEC response to SLR and that a mangrove forest’s vulnerability to SLR is not uniform throughout forest but can differ by mangrove zone.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"69 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eutrophication Saturates Surface Elevation Change Potential in Tidal Mangrove Forests\",\"authors\":\"Jeremy R. Conrad, Ken W. Krauss, Brian W. Benscoter, Ilka C. Feller, Nicole Cormier, Darren J. Johnson\",\"doi\":\"10.1007/s12237-024-01353-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coastal mangrove forests are at risk of being submerged due to sea-level rise (SLR). However, mangroves have persisted with changing sea levels due to a variety of biotic and physical feedback mechanisms that allow them to gain and maintain relative soil surface elevation. Therefore, mangrove’s resilience to SLR is dependent upon their ability to build soil elevation at a rate that tracks with SLR, or well-enough to migrate inland. Anthropogenic disturbances, such as altered hydrology and eutrophication, can degrade mangrove forest health and compromise this land building process, placing mangroves at greater risk. Much of Florida’s mangroves are adjacent to highly urbanized areas that produce nutrient-loaded runoff. This study assesses how experimental nutrient inputs in the eutrophic Caloosahatchee Estuary influence the soil surface elevation change (SEC) in two distinct mangrove zones. Annual rates of SEC were reduced by phosphorus additions and differed by mangrove zone, ranging from 0.67 ± 0.59 to 2.13 ± 0.61 and 4.21 ± 0.58 to 6.39 ± 0.59 mm year<sup>−1</sup> in the fringe and basin zone, respectively. This suggests that eutrophication can reduce the maximum potential SEC response to SLR and that a mangrove forest’s vulnerability to SLR is not uniform throughout forest but can differ by mangrove zone.</p>\",\"PeriodicalId\":11921,\"journal\":{\"name\":\"Estuaries and Coasts\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Estuaries and Coasts\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s12237-024-01353-8\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuaries and Coasts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12237-024-01353-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Eutrophication Saturates Surface Elevation Change Potential in Tidal Mangrove Forests
Coastal mangrove forests are at risk of being submerged due to sea-level rise (SLR). However, mangroves have persisted with changing sea levels due to a variety of biotic and physical feedback mechanisms that allow them to gain and maintain relative soil surface elevation. Therefore, mangrove’s resilience to SLR is dependent upon their ability to build soil elevation at a rate that tracks with SLR, or well-enough to migrate inland. Anthropogenic disturbances, such as altered hydrology and eutrophication, can degrade mangrove forest health and compromise this land building process, placing mangroves at greater risk. Much of Florida’s mangroves are adjacent to highly urbanized areas that produce nutrient-loaded runoff. This study assesses how experimental nutrient inputs in the eutrophic Caloosahatchee Estuary influence the soil surface elevation change (SEC) in two distinct mangrove zones. Annual rates of SEC were reduced by phosphorus additions and differed by mangrove zone, ranging from 0.67 ± 0.59 to 2.13 ± 0.61 and 4.21 ± 0.58 to 6.39 ± 0.59 mm year−1 in the fringe and basin zone, respectively. This suggests that eutrophication can reduce the maximum potential SEC response to SLR and that a mangrove forest’s vulnerability to SLR is not uniform throughout forest but can differ by mangrove zone.
期刊介绍:
Estuaries and Coasts is the journal of the Coastal and Estuarine Research Federation (CERF). Begun in 1977 as Chesapeake Science, the journal has gradually expanded its scope and circulation. Today, the journal publishes scholarly manuscripts on estuarine and near coastal ecosystems at the interface between the land and the sea where there are tidal fluctuations or sea water is diluted by fresh water. The interface is broadly defined to include estuaries and nearshore coastal waters including lagoons, wetlands, tidal fresh water, shores and beaches, but not the continental shelf. The journal covers research on physical, chemical, geological or biological processes, as well as applications to management of estuaries and coasts. The journal publishes original research findings, reviews and perspectives, techniques, comments, and management applications. Estuaries and Coasts will consider properly carried out studies that present inconclusive findings or document a failed replication of previously published work. Submissions that are primarily descriptive, strongly place-based, or only report on development of models or new methods without detailing their applications fall outside the scope of the journal.