{"title":"非简单多孔热弹性非局域理论中的好拟性和指数稳定性","authors":"Moncef Aouadi, Michele Ciarletta, Vincenzo Tibullo","doi":"10.1007/s11012-024-01768-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a nonlocal model for porous thermoelasticity is derived in the framework of the Mindlin’s strain gradient theory where the thermal behavior is based on the entropy balance postulated by Green–Naghdi models of type II or III. In this context, we add the second gradient of volume fraction field and the second gradient of deformation to the set of independent constituent variables. The elastic nonlocal parameter <span>\\(\\varpi\\)</span> and the strain gradient length scale parameter <i>l</i> are also considered in the derived model. New mathematical difficulties then appeared due to the higher gradient terms in the resulting system which is a coupling of three second order equations in time. By using the theories of monotone operators and the nonlinear semigroups, we prove the well-posedness of the derived model in the one dimensional setting. The exponential stability of the corresponding semigroup to type II and type III models is proved. The proof is essentially based on a characterization stated in the book of Liu and Zheng. This result of exponential stability of the type II model confirms the results of the classic theory for which the exponential decay cannot hold (for type II) without adding a dissipative mechanism.</p>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"31 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness and exponential stability in nonlocal theory of nonsimple porous thermoelasticity\",\"authors\":\"Moncef Aouadi, Michele Ciarletta, Vincenzo Tibullo\",\"doi\":\"10.1007/s11012-024-01768-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, a nonlocal model for porous thermoelasticity is derived in the framework of the Mindlin’s strain gradient theory where the thermal behavior is based on the entropy balance postulated by Green–Naghdi models of type II or III. In this context, we add the second gradient of volume fraction field and the second gradient of deformation to the set of independent constituent variables. The elastic nonlocal parameter <span>\\\\(\\\\varpi\\\\)</span> and the strain gradient length scale parameter <i>l</i> are also considered in the derived model. New mathematical difficulties then appeared due to the higher gradient terms in the resulting system which is a coupling of three second order equations in time. By using the theories of monotone operators and the nonlinear semigroups, we prove the well-posedness of the derived model in the one dimensional setting. The exponential stability of the corresponding semigroup to type II and type III models is proved. The proof is essentially based on a characterization stated in the book of Liu and Zheng. This result of exponential stability of the type II model confirms the results of the classic theory for which the exponential decay cannot hold (for type II) without adding a dissipative mechanism.</p>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11012-024-01768-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11012-024-01768-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Well-posedness and exponential stability in nonlocal theory of nonsimple porous thermoelasticity
In this paper, a nonlocal model for porous thermoelasticity is derived in the framework of the Mindlin’s strain gradient theory where the thermal behavior is based on the entropy balance postulated by Green–Naghdi models of type II or III. In this context, we add the second gradient of volume fraction field and the second gradient of deformation to the set of independent constituent variables. The elastic nonlocal parameter \(\varpi\) and the strain gradient length scale parameter l are also considered in the derived model. New mathematical difficulties then appeared due to the higher gradient terms in the resulting system which is a coupling of three second order equations in time. By using the theories of monotone operators and the nonlinear semigroups, we prove the well-posedness of the derived model in the one dimensional setting. The exponential stability of the corresponding semigroup to type II and type III models is proved. The proof is essentially based on a characterization stated in the book of Liu and Zheng. This result of exponential stability of the type II model confirms the results of the classic theory for which the exponential decay cannot hold (for type II) without adding a dissipative mechanism.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.