热弹性复合介质中的加速波与温度相关相场

IF 1.9 3区 工程技术 Q3 MECHANICS
Pasquale Giovine, Paolo Maria Mariano, Federica Mugnaioni
{"title":"热弹性复合介质中的加速波与温度相关相场","authors":"Pasquale Giovine, Paolo Maria Mariano, Federica Mugnaioni","doi":"10.1007/s11012-024-01792-4","DOIUrl":null,"url":null,"abstract":"<p>We analyze homothermal acceleration waves in complex materials (those with active microstructure) in the presence of internal constraints that link the temperature to a manifold-valued phase-field describing a generic material microstructure at a certain spatial scale. Such a constraint leads to hyperbolic heat conduction even in the absence of macroscopic strain; we show how it influences the way acceleration waves propagate. The scheme describes a thermoelastic behavior that is compatible with dependence of the free energy on temperature gradient (a dependence otherwise forbidden by the second law of thermodynamics in the traditional non-isothermal description of simple bodies). We eventually provide examples in which the general treatment that we develop applies.</p>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acceleration waves in thermoelastic complex media with temperature-dependent phase fields\",\"authors\":\"Pasquale Giovine, Paolo Maria Mariano, Federica Mugnaioni\",\"doi\":\"10.1007/s11012-024-01792-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We analyze homothermal acceleration waves in complex materials (those with active microstructure) in the presence of internal constraints that link the temperature to a manifold-valued phase-field describing a generic material microstructure at a certain spatial scale. Such a constraint leads to hyperbolic heat conduction even in the absence of macroscopic strain; we show how it influences the way acceleration waves propagate. The scheme describes a thermoelastic behavior that is compatible with dependence of the free energy on temperature gradient (a dependence otherwise forbidden by the second law of thermodynamics in the traditional non-isothermal description of simple bodies). We eventually provide examples in which the general treatment that we develop applies.</p>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11012-024-01792-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11012-024-01792-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了复杂材料(具有活跃微观结构的材料)中存在内部约束条件的同温加速波,这些约束条件将温度与描述特定空间尺度上通用材料微观结构的流形值相场联系起来。即使在没有宏观应变的情况下,这种约束也会导致双曲热传导;我们将展示它如何影响加速波的传播方式。该方案描述了一种热弹性行为,它与自由能对温度梯度的依赖性(在传统的简单物体非等温描述中,热力学第二定律禁止这种依赖性)相兼容。我们最终将举例说明我们开发的一般处理方法在哪些情况下适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Acceleration waves in thermoelastic complex media with temperature-dependent phase fields

Acceleration waves in thermoelastic complex media with temperature-dependent phase fields

We analyze homothermal acceleration waves in complex materials (those with active microstructure) in the presence of internal constraints that link the temperature to a manifold-valued phase-field describing a generic material microstructure at a certain spatial scale. Such a constraint leads to hyperbolic heat conduction even in the absence of macroscopic strain; we show how it influences the way acceleration waves propagate. The scheme describes a thermoelastic behavior that is compatible with dependence of the free energy on temperature gradient (a dependence otherwise forbidden by the second law of thermodynamics in the traditional non-isothermal description of simple bodies). We eventually provide examples in which the general treatment that we develop applies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meccanica
Meccanica 物理-力学
CiteScore
4.70
自引率
3.70%
发文量
151
审稿时长
7 months
期刊介绍: Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics. Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences. Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信