包络双巴拿赫代数和近似性质

IF 1.3 4区 数学 Q1 MATHEMATICS
N. Razi, A. Pourabbas
{"title":"包络双巴拿赫代数和近似性质","authors":"N. Razi, A. Pourabbas","doi":"10.1155/2024/6300080","DOIUrl":null,"url":null,"abstract":"Suppose that <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.2729 8.68572\" width=\"9.2729pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> is a Banach algebra and <svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 26.2232 11.5564\" width=\"26.2232pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,7.895,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,12.393,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,21.528,0)\"></path></g></svg> is its enveloping dual Banach algebra, we show that <svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 26.2232 11.5564\" width=\"26.2232pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-71\"></use></g><g transform=\"matrix(.013,0,0,-0.013,7.895,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,12.393,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,21.528,0)\"><use xlink:href=\"#g113-42\"></use></g></svg> is approximately contractible (approximately amenable) if <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.2729 8.68572\" width=\"9.2729pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-66\"></use></g></svg> has the same property. Also, we study the relation between the pseudoamenability of <svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 26.2232 11.5564\" width=\"26.2232pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-71\"></use></g><g transform=\"matrix(.013,0,0,-0.013,7.895,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,12.393,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,21.528,0)\"><use xlink:href=\"#g113-42\"></use></g></svg> and the pseudoamenability of the second dual <svg height=\"10.1524pt\" style=\"vertical-align:-0.04990005pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.1025 20.9329 10.1524\" width=\"20.9329pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,9.135,-5.741)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,14.695,-5.741)\"><use xlink:href=\"#g50-43\"></use></g></svg> and we also characterize approximate biflatness and approximate biprojectivity of <svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 26.2232 11.5564\" width=\"26.2232pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-71\"></use></g><g transform=\"matrix(.013,0,0,-0.013,7.895,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,12.393,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,21.528,0)\"><use xlink:href=\"#g113-42\"></use></g></svg> associated with approximate biflatness and approximate biprojectivity of the second dual <span><svg height=\"10.1524pt\" style=\"vertical-align:-0.04990005pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.1025 20.9329 10.1524\" width=\"20.9329pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,9.135,-5.741)\"><use xlink:href=\"#g50-43\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,14.695,-5.741)\"><use xlink:href=\"#g50-43\"></use></g></svg>.</span>","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"16 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enveloping Dual Banach Algebras and Approximate Properties\",\"authors\":\"N. Razi, A. Pourabbas\",\"doi\":\"10.1155/2024/6300080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose that <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.2729 8.68572\\\" width=\\\"9.2729pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> is a Banach algebra and <svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 26.2232 11.5564\\\" width=\\\"26.2232pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,7.895,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,12.393,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,21.528,0)\\\"></path></g></svg> is its enveloping dual Banach algebra, we show that <svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 26.2232 11.5564\\\" width=\\\"26.2232pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-71\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,7.895,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,12.393,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,21.528,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg> is approximately contractible (approximately amenable) if <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.2729 8.68572\\\" width=\\\"9.2729pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g></svg> has the same property. Also, we study the relation between the pseudoamenability of <svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 26.2232 11.5564\\\" width=\\\"26.2232pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-71\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,7.895,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,12.393,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,21.528,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg> and the pseudoamenability of the second dual <svg height=\\\"10.1524pt\\\" style=\\\"vertical-align:-0.04990005pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -10.1025 20.9329 10.1524\\\" width=\\\"20.9329pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,9.135,-5.741)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,14.695,-5.741)\\\"><use xlink:href=\\\"#g50-43\\\"></use></g></svg> and we also characterize approximate biflatness and approximate biprojectivity of <svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 26.2232 11.5564\\\" width=\\\"26.2232pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-71\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,7.895,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,12.393,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,21.528,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg> associated with approximate biflatness and approximate biprojectivity of the second dual <span><svg height=\\\"10.1524pt\\\" style=\\\"vertical-align:-0.04990005pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -10.1025 20.9329 10.1524\\\" width=\\\"20.9329pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,9.135,-5.741)\\\"><use xlink:href=\\\"#g50-43\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,14.695,-5.741)\\\"><use xlink:href=\\\"#g50-43\\\"></use></g></svg>.</span>\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6300080\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/6300080","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设是一个巴拿赫代数,并且是它的包络对偶巴拿赫代数,我们证明,如果具有相同的性质,则近似可收缩(近似可处理)。此外,我们还研究了第二对偶的伪可收缩性与伪可收缩性之间的关系,并描述了与第二对偶的近似双平面性和近似双投影性相关的近似双平面性和近似双投影性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enveloping Dual Banach Algebras and Approximate Properties
Suppose that is a Banach algebra and is its enveloping dual Banach algebra, we show that is approximately contractible (approximately amenable) if has the same property. Also, we study the relation between the pseudoamenability of and the pseudoamenability of the second dual and we also characterize approximate biflatness and approximate biprojectivity of associated with approximate biflatness and approximate biprojectivity of the second dual .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信