N. Razi, A. Pourabbas
求助PDF
{"title":"包络双巴拿赫代数和近似性质","authors":"N. Razi, A. Pourabbas","doi":"10.1155/2024/6300080","DOIUrl":null,"url":null,"abstract":"Suppose that <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.2729 8.68572\" width=\"9.2729pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> is a Banach algebra and <svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 26.2232 11.5564\" width=\"26.2232pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,7.895,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,12.393,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,21.528,0)\"></path></g></svg> is its enveloping dual Banach algebra, we show that <svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 26.2232 11.5564\" width=\"26.2232pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-71\"></use></g><g transform=\"matrix(.013,0,0,-0.013,7.895,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,12.393,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,21.528,0)\"><use xlink:href=\"#g113-42\"></use></g></svg> is approximately contractible (approximately amenable) if <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.2729 8.68572\" width=\"9.2729pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-66\"></use></g></svg> has the same property. Also, we study the relation between the pseudoamenability of <svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 26.2232 11.5564\" width=\"26.2232pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-71\"></use></g><g transform=\"matrix(.013,0,0,-0.013,7.895,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,12.393,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,21.528,0)\"><use xlink:href=\"#g113-42\"></use></g></svg> and the pseudoamenability of the second dual <svg height=\"10.1524pt\" style=\"vertical-align:-0.04990005pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.1025 20.9329 10.1524\" width=\"20.9329pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,9.135,-5.741)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,14.695,-5.741)\"><use xlink:href=\"#g50-43\"></use></g></svg> and we also characterize approximate biflatness and approximate biprojectivity of <svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 26.2232 11.5564\" width=\"26.2232pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-71\"></use></g><g transform=\"matrix(.013,0,0,-0.013,7.895,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,12.393,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,21.528,0)\"><use xlink:href=\"#g113-42\"></use></g></svg> associated with approximate biflatness and approximate biprojectivity of the second dual <span><svg height=\"10.1524pt\" style=\"vertical-align:-0.04990005pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.1025 20.9329 10.1524\" width=\"20.9329pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,9.135,-5.741)\"><use xlink:href=\"#g50-43\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,14.695,-5.741)\"><use xlink:href=\"#g50-43\"></use></g></svg>.</span>","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"16 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enveloping Dual Banach Algebras and Approximate Properties\",\"authors\":\"N. Razi, A. Pourabbas\",\"doi\":\"10.1155/2024/6300080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose that <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.2729 8.68572\\\" width=\\\"9.2729pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> is a Banach algebra and <svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 26.2232 11.5564\\\" width=\\\"26.2232pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,7.895,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,12.393,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,21.528,0)\\\"></path></g></svg> is its enveloping dual Banach algebra, we show that <svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 26.2232 11.5564\\\" width=\\\"26.2232pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-71\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,7.895,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,12.393,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,21.528,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg> is approximately contractible (approximately amenable) if <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.2729 8.68572\\\" width=\\\"9.2729pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g></svg> has the same property. Also, we study the relation between the pseudoamenability of <svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 26.2232 11.5564\\\" width=\\\"26.2232pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-71\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,7.895,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,12.393,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,21.528,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg> and the pseudoamenability of the second dual <svg height=\\\"10.1524pt\\\" style=\\\"vertical-align:-0.04990005pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -10.1025 20.9329 10.1524\\\" width=\\\"20.9329pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,9.135,-5.741)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,14.695,-5.741)\\\"><use xlink:href=\\\"#g50-43\\\"></use></g></svg> and we also characterize approximate biflatness and approximate biprojectivity of <svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 26.2232 11.5564\\\" width=\\\"26.2232pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-71\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,7.895,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,12.393,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,21.528,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg> associated with approximate biflatness and approximate biprojectivity of the second dual <span><svg height=\\\"10.1524pt\\\" style=\\\"vertical-align:-0.04990005pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -10.1025 20.9329 10.1524\\\" width=\\\"20.9329pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,9.135,-5.741)\\\"><use xlink:href=\\\"#g50-43\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,14.695,-5.741)\\\"><use xlink:href=\\\"#g50-43\\\"></use></g></svg>.</span>\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6300080\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/6300080","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用