任意度和阶的费勒斯函数及相关函数

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
{"title":"任意度和阶的费勒斯函数及相关函数","authors":"","doi":"10.1007/s00365-024-09683-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Numerous novel integral and series representations for Ferrers functions of the first kind (associated Legendre functions on the cut) of arbitrary degree and order, various integral, series and differential relations connecting Ferrers functions of different orders and degrees as well as a uniform asymptotic expansion are derived in this article. Simple proofs of four generating functions for Ferrers functions are given. Addition theorems for P<span> <span>\\(_{\\nu }^{-\\mu }\\left( \\tanh \\left( \\alpha +\\beta \\right) \\right) \\)</span> </span> are proved by basing on generation functions for three families of hypergeometric polynomials. Relations for Gegenbauer polynomials and Ferrers associated Legendre functions (associated Legendre polynomials) are obtained as special cases.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferrers Functions of Arbitrary Degree and Order and Related Functions\",\"authors\":\"\",\"doi\":\"10.1007/s00365-024-09683-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Numerous novel integral and series representations for Ferrers functions of the first kind (associated Legendre functions on the cut) of arbitrary degree and order, various integral, series and differential relations connecting Ferrers functions of different orders and degrees as well as a uniform asymptotic expansion are derived in this article. Simple proofs of four generating functions for Ferrers functions are given. Addition theorems for P<span> <span>\\\\(_{\\\\nu }^{-\\\\mu }\\\\left( \\\\tanh \\\\left( \\\\alpha +\\\\beta \\\\right) \\\\right) \\\\)</span> </span> are proved by basing on generation functions for three families of hypergeometric polynomials. Relations for Gegenbauer polynomials and Ferrers associated Legendre functions (associated Legendre polynomials) are obtained as special cases.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00365-024-09683-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-024-09683-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文推导了任意阶数和阶次的第一类费勒斯函数(切割上的相关 Legendre 函数)的大量新的积分和级数表示,连接不同阶数和阶次的费勒斯函数的各种积分、级数和微分关系,以及统一渐近展开。文章给出了费勒斯函数四个生成函数的简单证明。根据三个超几何多项式族的生成函数,证明了 P \(_{\nu }^{-\mu }\left( \tanh \left( \alpha +\beta \right) \right) \)的加法定理。作为特例,得到了格根鲍尔多项式和费勒斯关联列根德函数(关联列根德多项式)的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ferrers Functions of Arbitrary Degree and Order and Related Functions

Abstract

Numerous novel integral and series representations for Ferrers functions of the first kind (associated Legendre functions on the cut) of arbitrary degree and order, various integral, series and differential relations connecting Ferrers functions of different orders and degrees as well as a uniform asymptotic expansion are derived in this article. Simple proofs of four generating functions for Ferrers functions are given. Addition theorems for P \(_{\nu }^{-\mu }\left( \tanh \left( \alpha +\beta \right) \right) \) are proved by basing on generation functions for three families of hypergeometric polynomials. Relations for Gegenbauer polynomials and Ferrers associated Legendre functions (associated Legendre polynomials) are obtained as special cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信