Andrea Argenziano, Marco Cannone, Marco Sammartino
{"title":"半空间中的纳维-斯托克斯方程与非兼容数据","authors":"Andrea Argenziano, Marco Cannone, Marco Sammartino","doi":"10.1007/s00021-024-00863-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers the Navier–Stokes equations in the half plane with Euler-type initial conditions, i.e., initial conditions with a non-zero tangential component at the boundary. Under analyticity assumptions for the data, we prove that the solution exists for a short time independent of the viscosity. We construct the Navier–Stokes solution through a composite asymptotic expansion involving solutions of the Euler and Prandtl equations plus an error term. The norm of the error goes to zero with the square root of the viscosity. The Prandtl solution contains a singular term, which influences the regularity of the error. The error term is the sum of a first-order Euler correction, a first-order Prandtl correction, and a further error term. The use of an analytic setting is mainly due to the Prandtl equation.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-024-00863-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Navier–Stokes Equations in the Half Space with Non Compatible Data\",\"authors\":\"Andrea Argenziano, Marco Cannone, Marco Sammartino\",\"doi\":\"10.1007/s00021-024-00863-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper considers the Navier–Stokes equations in the half plane with Euler-type initial conditions, i.e., initial conditions with a non-zero tangential component at the boundary. Under analyticity assumptions for the data, we prove that the solution exists for a short time independent of the viscosity. We construct the Navier–Stokes solution through a composite asymptotic expansion involving solutions of the Euler and Prandtl equations plus an error term. The norm of the error goes to zero with the square root of the viscosity. The Prandtl solution contains a singular term, which influences the regularity of the error. The error term is the sum of a first-order Euler correction, a first-order Prandtl correction, and a further error term. The use of an analytic setting is mainly due to the Prandtl equation.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00021-024-00863-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00863-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00863-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Navier–Stokes Equations in the Half Space with Non Compatible Data
This paper considers the Navier–Stokes equations in the half plane with Euler-type initial conditions, i.e., initial conditions with a non-zero tangential component at the boundary. Under analyticity assumptions for the data, we prove that the solution exists for a short time independent of the viscosity. We construct the Navier–Stokes solution through a composite asymptotic expansion involving solutions of the Euler and Prandtl equations plus an error term. The norm of the error goes to zero with the square root of the viscosity. The Prandtl solution contains a singular term, which influences the regularity of the error. The error term is the sum of a first-order Euler correction, a first-order Prandtl correction, and a further error term. The use of an analytic setting is mainly due to the Prandtl equation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.