用三角多项式对奇异量进行逼近和插值

IF 2.3 2区 数学 Q1 MATHEMATICS
Paul Catala, Mathias Hockmann, Stefan Kunis, Markus Wageringel
{"title":"用三角多项式对奇异量进行逼近和插值","authors":"Paul Catala, Mathias Hockmann, Stefan Kunis, Markus Wageringel","doi":"10.1007/s00365-024-09686-0","DOIUrl":null,"url":null,"abstract":"<p>Complex valued measures of finite total variation are a powerful signal model in many applications. Restricting to the <i>d</i>-dimensional torus, finitely supported measures can be exactly recovered from their trigonometric moments up to some order if this order is large enough. Here, we consider the approximation of general measures, e.g., supported on a curve, by trigonometric polynomials of fixed degree with respect to the 1-Wasserstein distance. We prove sharp lower bounds for their best approximation and (almost) matching upper bounds for effectively computable approximations when the trigonometric moments of the measure are known. A second class of sum of squares polynomials is shown to interpolate the indicator function on the support of the measure and to converge to zero outside.</p>","PeriodicalId":50621,"journal":{"name":"Constructive Approximation","volume":"145 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation and Interpolation of Singular Measures by Trigonometric Polynomials\",\"authors\":\"Paul Catala, Mathias Hockmann, Stefan Kunis, Markus Wageringel\",\"doi\":\"10.1007/s00365-024-09686-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Complex valued measures of finite total variation are a powerful signal model in many applications. Restricting to the <i>d</i>-dimensional torus, finitely supported measures can be exactly recovered from their trigonometric moments up to some order if this order is large enough. Here, we consider the approximation of general measures, e.g., supported on a curve, by trigonometric polynomials of fixed degree with respect to the 1-Wasserstein distance. We prove sharp lower bounds for their best approximation and (almost) matching upper bounds for effectively computable approximations when the trigonometric moments of the measure are known. A second class of sum of squares polynomials is shown to interpolate the indicator function on the support of the measure and to converge to zero outside.</p>\",\"PeriodicalId\":50621,\"journal\":{\"name\":\"Constructive Approximation\",\"volume\":\"145 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Constructive Approximation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00365-024-09686-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Approximation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-024-09686-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在许多应用中,有限总变的复值度量是一种强大的信号模型。限于 d 维环面,如果三角矩的阶数足够大,那么有限支持的度量可以精确地从它们的三角矩恢复到某个阶数。在此,我们考虑用关于 1-Wasserstein 距离的固定阶三角多项式来近似一般度量,例如曲线上支持的度量。当已知度量的三角矩时,我们证明了其最佳近似值的尖锐下界和有效可计算近似值的(几乎)匹配上界。我们还证明了第二类平方和多项式可以在度量的支持面上对指标函数进行插值,并在外部收敛为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation and Interpolation of Singular Measures by Trigonometric Polynomials

Complex valued measures of finite total variation are a powerful signal model in many applications. Restricting to the d-dimensional torus, finitely supported measures can be exactly recovered from their trigonometric moments up to some order if this order is large enough. Here, we consider the approximation of general measures, e.g., supported on a curve, by trigonometric polynomials of fixed degree with respect to the 1-Wasserstein distance. We prove sharp lower bounds for their best approximation and (almost) matching upper bounds for effectively computable approximations when the trigonometric moments of the measure are known. A second class of sum of squares polynomials is shown to interpolate the indicator function on the support of the measure and to converge to zero outside.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
3.70%
发文量
35
审稿时长
1 months
期刊介绍: Constructive Approximation is an international mathematics journal dedicated to Approximations and Expansions and related research in computation, function theory, functional analysis, interpolation spaces and interpolation of operators, numerical analysis, space of functions, special functions, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信