{"title":"论二维分散模型对称解的稳定性","authors":"Long Pei, Fengyang Xiao, Pan Zhang","doi":"10.1007/s00021-024-00869-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the steadiness of symmetric solutions to two dispersive models in shallow water and hyperelastic mechanics, respectively. These models are derived previously in the two-dimensional setting and can be viewed as the generalization of the Camassa–Holm and Kadomtsev–Petviashvili equations. For these two models, we prove that the symmetry of classical solutions implies steadiness in the horizontal direction. We also confirm the connection between symmetry and steadiness for solutions in weak formulation, which covers in particular the peaked solutions.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Steadiness of Symmetric Solutions to Two Dimensional Dispersive Models\",\"authors\":\"Long Pei, Fengyang Xiao, Pan Zhang\",\"doi\":\"10.1007/s00021-024-00869-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the steadiness of symmetric solutions to two dispersive models in shallow water and hyperelastic mechanics, respectively. These models are derived previously in the two-dimensional setting and can be viewed as the generalization of the Camassa–Holm and Kadomtsev–Petviashvili equations. For these two models, we prove that the symmetry of classical solutions implies steadiness in the horizontal direction. We also confirm the connection between symmetry and steadiness for solutions in weak formulation, which covers in particular the peaked solutions.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00869-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00869-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On the Steadiness of Symmetric Solutions to Two Dimensional Dispersive Models
In this paper, we consider the steadiness of symmetric solutions to two dispersive models in shallow water and hyperelastic mechanics, respectively. These models are derived previously in the two-dimensional setting and can be viewed as the generalization of the Camassa–Holm and Kadomtsev–Petviashvili equations. For these two models, we prove that the symmetry of classical solutions implies steadiness in the horizontal direction. We also confirm the connection between symmetry and steadiness for solutions in weak formulation, which covers in particular the peaked solutions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.