Martin Milanič, Irena Penev, Nevena Pivač, Kristina Vušković
{"title":"二等分隔符","authors":"Martin Milanič, Irena Penev, Nevena Pivač, Kristina Vušković","doi":"10.1002/jgt.23098","DOIUrl":null,"url":null,"abstract":"<p>A <i>minimal separator</i> of a graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a set <span></span><math>\n \n <mrow>\n <mi>S</mi>\n \n <mo>⊆</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> such that there exist vertices <span></span><math>\n \n <mrow>\n <mi>a</mi>\n \n <mo>,</mo>\n \n <mi>b</mi>\n \n <mo>∈</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⧹</mo>\n \n <mi>S</mi>\n </mrow></math> with the property that <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> separates <span></span><math>\n \n <mrow>\n <mi>a</mi>\n </mrow></math> from <span></span><math>\n \n <mrow>\n <mi>b</mi>\n </mrow></math> in <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>, but no proper subset of <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> does. For an integer <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>0</mn>\n </mrow></math>, we say that a minimal separator is <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-<i>simplicial</i> if it can be covered by <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> cliques and denote by <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>k</mi>\n </msub>\n </mrow></math> the class of all graphs in which each minimal separator is <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-simplicial. We show that for each <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>0</mn>\n </mrow></math>, the class <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>k</mi>\n </msub>\n </mrow></math> is closed under induced minors, and we use this to show that the \n<span>Maximum Weight Stable Set</span> problem can be solved in polynomial time for <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>k</mi>\n </msub>\n </mrow></math>. We also give a complete list of minimal forbidden induced minors for <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>2</mn>\n </msub>\n </mrow></math>. Next, we show that, for <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>1</mn>\n </mrow></math>, every nonnull graph in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>k</mi>\n </msub>\n </mrow></math> has a <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-simplicial vertex, that is, a vertex whose neighborhood is a union of <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> cliques; we deduce that the \n<span>Maximum Weight Clique</span> problem can be solved in polynomial time for graphs in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>2</mn>\n </msub>\n </mrow></math>. Further, we show that, for <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow></math>, it is NP-hard to recognize graphs in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>k</mi>\n </msub>\n </mrow></math>; the time complexity of recognizing graphs in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>2</mn>\n </msub>\n </mrow></math> is unknown. We also show that the \n<span>Maximum Clique</span> problem is NP-hard for graphs in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>3</mn>\n </msub>\n </mrow></math>. Finally, we prove a decomposition theorem for diamond-free graphs in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>2</mn>\n </msub>\n </mrow></math> (where the <i>diamond</i> is the graph obtained from <span></span><math>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mn>4</mn>\n </msub>\n </mrow></math> by deleting one edge), and we use this theorem to obtain polynomial-time algorithms for the \n<span>Vertex Coloring</span> and recognition problems for diamond-free graphs in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>2</mn>\n </msub>\n </mrow></math>, and improved running times for the \n<span>Maximum Weight Clique</span> and \n<span>Maximum Weight Stable Set</span> problems for this class of graphs.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 4","pages":"816-842"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23098","citationCount":"0","resultStr":"{\"title\":\"Bisimplicial separators\",\"authors\":\"Martin Milanič, Irena Penev, Nevena Pivač, Kristina Vušković\",\"doi\":\"10.1002/jgt.23098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <i>minimal separator</i> of a graph <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is a set <span></span><math>\\n \\n <mrow>\\n <mi>S</mi>\\n \\n <mo>⊆</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> such that there exist vertices <span></span><math>\\n \\n <mrow>\\n <mi>a</mi>\\n \\n <mo>,</mo>\\n \\n <mi>b</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⧹</mo>\\n \\n <mi>S</mi>\\n </mrow></math> with the property that <span></span><math>\\n \\n <mrow>\\n <mi>S</mi>\\n </mrow></math> separates <span></span><math>\\n \\n <mrow>\\n <mi>a</mi>\\n </mrow></math> from <span></span><math>\\n \\n <mrow>\\n <mi>b</mi>\\n </mrow></math> in <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math>, but no proper subset of <span></span><math>\\n \\n <mrow>\\n <mi>S</mi>\\n </mrow></math> does. For an integer <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>0</mn>\\n </mrow></math>, we say that a minimal separator is <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math>-<i>simplicial</i> if it can be covered by <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math> cliques and denote by <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow></math> the class of all graphs in which each minimal separator is <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math>-simplicial. We show that for each <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>0</mn>\\n </mrow></math>, the class <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow></math> is closed under induced minors, and we use this to show that the \\n<span>Maximum Weight Stable Set</span> problem can be solved in polynomial time for <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow></math>. We also give a complete list of minimal forbidden induced minors for <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow></math>. Next, we show that, for <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>1</mn>\\n </mrow></math>, every nonnull graph in <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow></math> has a <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math>-simplicial vertex, that is, a vertex whose neighborhood is a union of <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow></math> cliques; we deduce that the \\n<span>Maximum Weight Clique</span> problem can be solved in polynomial time for graphs in <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow></math>. Further, we show that, for <span></span><math>\\n \\n <mrow>\\n <mi>k</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>3</mn>\\n </mrow></math>, it is NP-hard to recognize graphs in <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mi>k</mi>\\n </msub>\\n </mrow></math>; the time complexity of recognizing graphs in <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow></math> is unknown. We also show that the \\n<span>Maximum Clique</span> problem is NP-hard for graphs in <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>3</mn>\\n </msub>\\n </mrow></math>. Finally, we prove a decomposition theorem for diamond-free graphs in <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow></math> (where the <i>diamond</i> is the graph obtained from <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mn>4</mn>\\n </msub>\\n </mrow></math> by deleting one edge), and we use this theorem to obtain polynomial-time algorithms for the \\n<span>Vertex Coloring</span> and recognition problems for diamond-free graphs in <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow></math>, and improved running times for the \\n<span>Maximum Weight Clique</span> and \\n<span>Maximum Weight Stable Set</span> problems for this class of graphs.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 4\",\"pages\":\"816-842\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23098\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23098\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23098","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A minimal separator of a graph is a set such that there exist vertices with the property that separates from in , but no proper subset of does. For an integer , we say that a minimal separator is -simplicial if it can be covered by cliques and denote by the class of all graphs in which each minimal separator is -simplicial. We show that for each , the class is closed under induced minors, and we use this to show that the
Maximum Weight Stable Set problem can be solved in polynomial time for . We also give a complete list of minimal forbidden induced minors for . Next, we show that, for , every nonnull graph in has a -simplicial vertex, that is, a vertex whose neighborhood is a union of cliques; we deduce that the
Maximum Weight Clique problem can be solved in polynomial time for graphs in . Further, we show that, for , it is NP-hard to recognize graphs in ; the time complexity of recognizing graphs in is unknown. We also show that the
Maximum Clique problem is NP-hard for graphs in . Finally, we prove a decomposition theorem for diamond-free graphs in (where the diamond is the graph obtained from by deleting one edge), and we use this theorem to obtain polynomial-time algorithms for the
Vertex Coloring and recognition problems for diamond-free graphs in , and improved running times for the
Maximum Weight Clique and
Maximum Weight Stable Set problems for this class of graphs.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .