{"title":"立方图的约束支配数的最佳上限","authors":"Boštjan Brešar, Michael A. Henning","doi":"10.1002/jgt.23095","DOIUrl":null,"url":null,"abstract":"<p>A dominating set in a graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a set <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> of vertices such that every vertex in <span></span><math>\n \n <mrow>\n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⧹</mo>\n \n <mi>S</mi>\n </mrow></math> is adjacent to a vertex in <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math>. A restrained dominating set of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a dominating set <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> with the additional restraint that the graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>S</mi>\n </mrow></math> obtained by removing all vertices in <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> is isolate-free. The domination number <span></span><math>\n \n <mrow>\n <mi>γ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> and the restrained domination number <span></span><math>\n \n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> are the minimum cardinalities of a dominating set and restrained dominating set, respectively, of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>. Let <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> be a cubic graph of order <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math>. A classical result of Reed states that <span></span><math>\n \n <mrow>\n <mi>γ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>3</mn>\n \n <mn>8</mn>\n </mfrac>\n \n <mi>n</mi>\n </mrow></math>, and this bound is best possible. To determine the best possible upper bound on the restrained domination number of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is more challenging, and we prove that <span></span><math>\n \n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>2</mn>\n \n <mn>5</mn>\n </mfrac>\n \n <mi>n</mi>\n </mrow></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23095","citationCount":"0","resultStr":"{\"title\":\"Best possible upper bounds on the restrained domination number of cubic graphs\",\"authors\":\"Boštjan Brešar, Michael A. Henning\",\"doi\":\"10.1002/jgt.23095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A dominating set in a graph <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is a set <span></span><math>\\n \\n <mrow>\\n <mi>S</mi>\\n </mrow></math> of vertices such that every vertex in <span></span><math>\\n \\n <mrow>\\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⧹</mo>\\n \\n <mi>S</mi>\\n </mrow></math> is adjacent to a vertex in <span></span><math>\\n \\n <mrow>\\n <mi>S</mi>\\n </mrow></math>. A restrained dominating set of <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is a dominating set <span></span><math>\\n \\n <mrow>\\n <mi>S</mi>\\n </mrow></math> with the additional restraint that the graph <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>−</mo>\\n \\n <mi>S</mi>\\n </mrow></math> obtained by removing all vertices in <span></span><math>\\n \\n <mrow>\\n <mi>S</mi>\\n </mrow></math> is isolate-free. The domination number <span></span><math>\\n \\n <mrow>\\n <mi>γ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> and the restrained domination number <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>γ</mi>\\n \\n <mi>r</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> are the minimum cardinalities of a dominating set and restrained dominating set, respectively, of <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math>. Let <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> be a cubic graph of order <span></span><math>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow></math>. A classical result of Reed states that <span></span><math>\\n \\n <mrow>\\n <mi>γ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mfrac>\\n <mn>3</mn>\\n \\n <mn>8</mn>\\n </mfrac>\\n \\n <mi>n</mi>\\n </mrow></math>, and this bound is best possible. To determine the best possible upper bound on the restrained domination number of <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is more challenging, and we prove that <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>γ</mi>\\n \\n <mi>r</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mfrac>\\n <mn>2</mn>\\n \\n <mn>5</mn>\\n </mfrac>\\n \\n <mi>n</mi>\\n </mrow></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23095\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
图中的支配集是这样一个顶点集合:图中的每个顶点都与图中的一个顶点相邻。限制支配集是一个支配集,其附加限制条件是移除所有 in 中的顶点后得到的图是无孤立的。支配数和受约束支配数分别是支配集和受约束支配集的最小心数。 假设是一个阶为 的立方图。里德的一个经典结果表明, ,而这个界限是可能的最佳界限。要确定......的受约束支配数的最佳可能上限则更具挑战性,我们将证明......。
Best possible upper bounds on the restrained domination number of cubic graphs
A dominating set in a graph is a set of vertices such that every vertex in is adjacent to a vertex in . A restrained dominating set of is a dominating set with the additional restraint that the graph obtained by removing all vertices in is isolate-free. The domination number and the restrained domination number are the minimum cardinalities of a dominating set and restrained dominating set, respectively, of . Let be a cubic graph of order . A classical result of Reed states that , and this bound is best possible. To determine the best possible upper bound on the restrained domination number of is more challenging, and we prove that .