立方图的约束支配数的最佳上限

IF 0.9 3区 数学 Q2 MATHEMATICS
Boštjan Brešar, Michael A. Henning
{"title":"立方图的约束支配数的最佳上限","authors":"Boštjan Brešar,&nbsp;Michael A. Henning","doi":"10.1002/jgt.23095","DOIUrl":null,"url":null,"abstract":"<p>A dominating set in a graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a set <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> of vertices such that every vertex in <span></span><math>\n \n <mrow>\n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⧹</mo>\n \n <mi>S</mi>\n </mrow></math> is adjacent to a vertex in <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math>. A restrained dominating set of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a dominating set <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> with the additional restraint that the graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>S</mi>\n </mrow></math> obtained by removing all vertices in <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> is isolate-free. The domination number <span></span><math>\n \n <mrow>\n <mi>γ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> and the restrained domination number <span></span><math>\n \n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> are the minimum cardinalities of a dominating set and restrained dominating set, respectively, of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>. Let <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> be a cubic graph of order <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math>. A classical result of Reed states that <span></span><math>\n \n <mrow>\n <mi>γ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>3</mn>\n \n <mn>8</mn>\n </mfrac>\n \n <mi>n</mi>\n </mrow></math>, and this bound is best possible. To determine the best possible upper bound on the restrained domination number of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is more challenging, and we prove that <span></span><math>\n \n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>r</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>2</mn>\n \n <mn>5</mn>\n </mfrac>\n \n <mi>n</mi>\n </mrow></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 4","pages":"763-815"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23095","citationCount":"0","resultStr":"{\"title\":\"Best possible upper bounds on the restrained domination number of cubic graphs\",\"authors\":\"Boštjan Brešar,&nbsp;Michael A. Henning\",\"doi\":\"10.1002/jgt.23095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A dominating set in a graph <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is a set <span></span><math>\\n \\n <mrow>\\n <mi>S</mi>\\n </mrow></math> of vertices such that every vertex in <span></span><math>\\n \\n <mrow>\\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⧹</mo>\\n \\n <mi>S</mi>\\n </mrow></math> is adjacent to a vertex in <span></span><math>\\n \\n <mrow>\\n <mi>S</mi>\\n </mrow></math>. A restrained dominating set of <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is a dominating set <span></span><math>\\n \\n <mrow>\\n <mi>S</mi>\\n </mrow></math> with the additional restraint that the graph <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>−</mo>\\n \\n <mi>S</mi>\\n </mrow></math> obtained by removing all vertices in <span></span><math>\\n \\n <mrow>\\n <mi>S</mi>\\n </mrow></math> is isolate-free. The domination number <span></span><math>\\n \\n <mrow>\\n <mi>γ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> and the restrained domination number <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>γ</mi>\\n \\n <mi>r</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math> are the minimum cardinalities of a dominating set and restrained dominating set, respectively, of <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math>. Let <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> be a cubic graph of order <span></span><math>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow></math>. A classical result of Reed states that <span></span><math>\\n \\n <mrow>\\n <mi>γ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mfrac>\\n <mn>3</mn>\\n \\n <mn>8</mn>\\n </mfrac>\\n \\n <mi>n</mi>\\n </mrow></math>, and this bound is best possible. To determine the best possible upper bound on the restrained domination number of <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is more challenging, and we prove that <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>γ</mi>\\n \\n <mi>r</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mfrac>\\n <mn>2</mn>\\n \\n <mn>5</mn>\\n </mfrac>\\n \\n <mi>n</mi>\\n </mrow></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 4\",\"pages\":\"763-815\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23095\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23095\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23095","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图中的支配集是这样一个顶点集合:图中的每个顶点都与图中的一个顶点相邻。限制支配集是一个支配集,其附加限制条件是移除所有 in 中的顶点后得到的图是无孤立的。支配数和受约束支配数分别是支配集和受约束支配集的最小心数。 假设是一个阶为 的立方图。里德的一个经典结果表明, ,而这个界限是可能的最佳界限。要确定......的受约束支配数的最佳可能上限则更具挑战性,我们将证明......。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Best possible upper bounds on the restrained domination number of cubic graphs

Best possible upper bounds on the restrained domination number of cubic graphs

A dominating set in a graph G is a set S of vertices such that every vertex in V ( G ) S is adjacent to a vertex in S . A restrained dominating set of G is a dominating set S with the additional restraint that the graph G S obtained by removing all vertices in S is isolate-free. The domination number γ ( G ) and the restrained domination number γ r ( G ) are the minimum cardinalities of a dominating set and restrained dominating set, respectively, of G . Let G be a cubic graph of order n . A classical result of Reed states that γ ( G ) 3 8 n , and this bound is best possible. To determine the best possible upper bound on the restrained domination number of G is more challenging, and we prove that γ r ( G ) 2 5 n .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信