{"title":"周长为 9 且没有较长奇数孔的图形是 3 可取的","authors":"Yan Wang, Rong Wu","doi":"10.1002/jgt.23101","DOIUrl":null,"url":null,"abstract":"<p>For a number <span></span><math>\n \n <mrow>\n <mi>l</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow></math>, let <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>l</mi>\n </msub>\n </mrow></math> denote the family of graphs which have girth <span></span><math>\n \n <mrow>\n <mn>2</mn>\n \n <mi>l</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow></math> and have no odd hole with length greater than <span></span><math>\n \n <mrow>\n <mn>2</mn>\n \n <mi>l</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow></math>. Wu, Xu and Xu conjectured that every graph in <span></span><math>\n \n <mrow>\n <msub>\n <mo>⋃</mo>\n \n <mrow>\n <mi>l</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </msub>\n \n <msub>\n <mi>G</mi>\n \n <mi>l</mi>\n </msub>\n </mrow></math> is 3-colourable. Chudnovsky et al., Wu et al., and Chen showed that every graph in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>2</mn>\n </msub>\n </mrow></math>, <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>3</mn>\n </msub>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <msub>\n <mo>⋃</mo>\n \n <mrow>\n <mi>l</mi>\n \n <mo>≥</mo>\n \n <mn>5</mn>\n </mrow>\n </msub>\n \n <msub>\n <mi>G</mi>\n \n <mi>l</mi>\n </msub>\n </mrow></math> is 3-colourable, respectively. In this paper, we prove that every graph in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>4</mn>\n </msub>\n </mrow></math> is 3-colourable. This confirms Wu, Xu and Xu's conjecture.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 4","pages":"871-886"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphs with girth 9 and without longer odd holes are 3-colourable\",\"authors\":\"Yan Wang, Rong Wu\",\"doi\":\"10.1002/jgt.23101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a number <span></span><math>\\n \\n <mrow>\\n <mi>l</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow></math>, let <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mi>l</mi>\\n </msub>\\n </mrow></math> denote the family of graphs which have girth <span></span><math>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>l</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow></math> and have no odd hole with length greater than <span></span><math>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>l</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow></math>. Wu, Xu and Xu conjectured that every graph in <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mo>⋃</mo>\\n \\n <mrow>\\n <mi>l</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </msub>\\n \\n <msub>\\n <mi>G</mi>\\n \\n <mi>l</mi>\\n </msub>\\n </mrow></math> is 3-colourable. Chudnovsky et al., Wu et al., and Chen showed that every graph in <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow></math>, <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>3</mn>\\n </msub>\\n </mrow></math> and <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mo>⋃</mo>\\n \\n <mrow>\\n <mi>l</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>5</mn>\\n </mrow>\\n </msub>\\n \\n <msub>\\n <mi>G</mi>\\n \\n <mi>l</mi>\\n </msub>\\n </mrow></math> is 3-colourable, respectively. In this paper, we prove that every graph in <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>4</mn>\\n </msub>\\n </mrow></math> is 3-colourable. This confirms Wu, Xu and Xu's conjecture.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 4\",\"pages\":\"871-886\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23101\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23101","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Graphs with girth 9 and without longer odd holes are 3-colourable
For a number , let denote the family of graphs which have girth and have no odd hole with length greater than . Wu, Xu and Xu conjectured that every graph in is 3-colourable. Chudnovsky et al., Wu et al., and Chen showed that every graph in , and is 3-colourable, respectively. In this paper, we prove that every graph in is 3-colourable. This confirms Wu, Xu and Xu's conjecture.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .