周长为 9 且没有较长奇数孔的图形是 3 可取的

IF 0.9 3区 数学 Q2 MATHEMATICS
Yan Wang, Rong Wu
{"title":"周长为 9 且没有较长奇数孔的图形是 3 可取的","authors":"Yan Wang,&nbsp;Rong Wu","doi":"10.1002/jgt.23101","DOIUrl":null,"url":null,"abstract":"<p>For a number <span></span><math>\n \n <mrow>\n <mi>l</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow></math>, let <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>l</mi>\n </msub>\n </mrow></math> denote the family of graphs which have girth <span></span><math>\n \n <mrow>\n <mn>2</mn>\n \n <mi>l</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow></math> and have no odd hole with length greater than <span></span><math>\n \n <mrow>\n <mn>2</mn>\n \n <mi>l</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow></math>. Wu, Xu and Xu conjectured that every graph in <span></span><math>\n \n <mrow>\n <msub>\n <mo>⋃</mo>\n \n <mrow>\n <mi>l</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </msub>\n \n <msub>\n <mi>G</mi>\n \n <mi>l</mi>\n </msub>\n </mrow></math> is 3-colourable. Chudnovsky et al., Wu et al., and Chen showed that every graph in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>2</mn>\n </msub>\n </mrow></math>, <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>3</mn>\n </msub>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <msub>\n <mo>⋃</mo>\n \n <mrow>\n <mi>l</mi>\n \n <mo>≥</mo>\n \n <mn>5</mn>\n </mrow>\n </msub>\n \n <msub>\n <mi>G</mi>\n \n <mi>l</mi>\n </msub>\n </mrow></math> is 3-colourable, respectively. In this paper, we prove that every graph in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>4</mn>\n </msub>\n </mrow></math> is 3-colourable. This confirms Wu, Xu and Xu's conjecture.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 4","pages":"871-886"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphs with girth 9 and without longer odd holes are 3-colourable\",\"authors\":\"Yan Wang,&nbsp;Rong Wu\",\"doi\":\"10.1002/jgt.23101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a number <span></span><math>\\n \\n <mrow>\\n <mi>l</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow></math>, let <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mi>l</mi>\\n </msub>\\n </mrow></math> denote the family of graphs which have girth <span></span><math>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>l</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow></math> and have no odd hole with length greater than <span></span><math>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>l</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow></math>. Wu, Xu and Xu conjectured that every graph in <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mo>⋃</mo>\\n \\n <mrow>\\n <mi>l</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </msub>\\n \\n <msub>\\n <mi>G</mi>\\n \\n <mi>l</mi>\\n </msub>\\n </mrow></math> is 3-colourable. Chudnovsky et al., Wu et al., and Chen showed that every graph in <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow></math>, <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>3</mn>\\n </msub>\\n </mrow></math> and <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mo>⋃</mo>\\n \\n <mrow>\\n <mi>l</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>5</mn>\\n </mrow>\\n </msub>\\n \\n <msub>\\n <mi>G</mi>\\n \\n <mi>l</mi>\\n </msub>\\n </mrow></math> is 3-colourable, respectively. In this paper, we prove that every graph in <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>4</mn>\\n </msub>\\n </mrow></math> is 3-colourable. This confirms Wu, Xu and Xu's conjecture.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 4\",\"pages\":\"871-886\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23101\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23101","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一个数 ,让 表示有周长且没有长度大于 的奇数洞的图族。 吴、徐和徐猜想,在 的每一个图都是 3 可容的。Chudnovsky 等人、Wu 等人和 Chen 分别证明了 、 和 中的每个图都是 3 可容的。在本文中,我们证明了每个 in 的图都是 3 有利的。这证实了 Wu、Xu 和 Xu 的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphs with girth 9 and without longer odd holes are 3-colourable

For a number l 2 , let G l denote the family of graphs which have girth 2 l + 1 and have no odd hole with length greater than 2 l + 1 . Wu, Xu and Xu conjectured that every graph in l 2 G l is 3-colourable. Chudnovsky et al., Wu et al., and Chen showed that every graph in G 2 , G 3 and l 5 G l is 3-colourable, respectively. In this paper, we prove that every graph in G 4 is 3-colourable. This confirms Wu, Xu and Xu's conjecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信