周长为 9 且没有较长奇数孔的图形是 3 可取的

Pub Date : 2024-04-11 DOI:10.1002/jgt.23101
Yan Wang, Rong Wu
{"title":"周长为 9 且没有较长奇数孔的图形是 3 可取的","authors":"Yan Wang,&nbsp;Rong Wu","doi":"10.1002/jgt.23101","DOIUrl":null,"url":null,"abstract":"<p>For a number <span></span><math>\n \n <mrow>\n <mi>l</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow></math>, let <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mi>l</mi>\n </msub>\n </mrow></math> denote the family of graphs which have girth <span></span><math>\n \n <mrow>\n <mn>2</mn>\n \n <mi>l</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow></math> and have no odd hole with length greater than <span></span><math>\n \n <mrow>\n <mn>2</mn>\n \n <mi>l</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow></math>. Wu, Xu and Xu conjectured that every graph in <span></span><math>\n \n <mrow>\n <msub>\n <mo>⋃</mo>\n \n <mrow>\n <mi>l</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n </msub>\n \n <msub>\n <mi>G</mi>\n \n <mi>l</mi>\n </msub>\n </mrow></math> is 3-colourable. Chudnovsky et al., Wu et al., and Chen showed that every graph in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>2</mn>\n </msub>\n </mrow></math>, <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>3</mn>\n </msub>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <msub>\n <mo>⋃</mo>\n \n <mrow>\n <mi>l</mi>\n \n <mo>≥</mo>\n \n <mn>5</mn>\n </mrow>\n </msub>\n \n <msub>\n <mi>G</mi>\n \n <mi>l</mi>\n </msub>\n </mrow></math> is 3-colourable, respectively. In this paper, we prove that every graph in <span></span><math>\n \n <mrow>\n <msub>\n <mi>G</mi>\n \n <mn>4</mn>\n </msub>\n </mrow></math> is 3-colourable. This confirms Wu, Xu and Xu's conjecture.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphs with girth 9 and without longer odd holes are 3-colourable\",\"authors\":\"Yan Wang,&nbsp;Rong Wu\",\"doi\":\"10.1002/jgt.23101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a number <span></span><math>\\n \\n <mrow>\\n <mi>l</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow></math>, let <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mi>l</mi>\\n </msub>\\n </mrow></math> denote the family of graphs which have girth <span></span><math>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>l</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow></math> and have no odd hole with length greater than <span></span><math>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mi>l</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow></math>. Wu, Xu and Xu conjectured that every graph in <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mo>⋃</mo>\\n \\n <mrow>\\n <mi>l</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n </msub>\\n \\n <msub>\\n <mi>G</mi>\\n \\n <mi>l</mi>\\n </msub>\\n </mrow></math> is 3-colourable. Chudnovsky et al., Wu et al., and Chen showed that every graph in <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow></math>, <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>3</mn>\\n </msub>\\n </mrow></math> and <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mo>⋃</mo>\\n \\n <mrow>\\n <mi>l</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>5</mn>\\n </mrow>\\n </msub>\\n \\n <msub>\\n <mi>G</mi>\\n \\n <mi>l</mi>\\n </msub>\\n </mrow></math> is 3-colourable, respectively. In this paper, we prove that every graph in <span></span><math>\\n \\n <mrow>\\n <msub>\\n <mi>G</mi>\\n \\n <mn>4</mn>\\n </msub>\\n </mrow></math> is 3-colourable. This confirms Wu, Xu and Xu's conjecture.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一个数 ,让 表示有周长且没有长度大于 的奇数洞的图族。 吴、徐和徐猜想,在 的每一个图都是 3 可容的。Chudnovsky 等人、Wu 等人和 Chen 分别证明了 、 和 中的每个图都是 3 可容的。在本文中,我们证明了每个 in 的图都是 3 有利的。这证实了 Wu、Xu 和 Xu 的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Graphs with girth 9 and without longer odd holes are 3-colourable

For a number l 2 , let G l denote the family of graphs which have girth 2 l + 1 and have no odd hole with length greater than 2 l + 1 . Wu, Xu and Xu conjectured that every graph in l 2 G l is 3-colourable. Chudnovsky et al., Wu et al., and Chen showed that every graph in G 2 , G 3 and l 5 G l is 3-colourable, respectively. In this paper, we prove that every graph in G 4 is 3-colourable. This confirms Wu, Xu and Xu's conjecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信